mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-29 09:17:29 +08:00
some nits
This commit is contained in:
parent
20d792576c
commit
4aee86243e
@ -34,15 +34,13 @@ def create_causal_mask(N: int, offset: int = 0, window_size: Optional[int] = Non
|
||||
return mask * -1e9
|
||||
|
||||
|
||||
def create_attention_mask(h: mx.array, cache: Optional[Any] = None, reference_idx: Optional[int] = None):
|
||||
def create_attention_mask(h: mx.array, cache: Optional[Any] = None):
|
||||
T = h.shape[1]
|
||||
if T > 1:
|
||||
window_size = None
|
||||
offset = 0
|
||||
if cache is not None and cache[0] is not None:
|
||||
c = cache[0]
|
||||
if reference_idx is not None:
|
||||
c = cache[reference_idx]
|
||||
if hasattr(c, "max_size"):
|
||||
offset = min(c.max_size, c.offset)
|
||||
window_size = c.max_size
|
||||
|
@ -6,9 +6,10 @@ from typing import Optional, Tuple
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .base import BaseModelArgs, create_causal_mask, scaled_dot_product_attention
|
||||
from .cache import KVCache, RotatingKVCache
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str
|
||||
@ -28,16 +29,6 @@ class ModelArgs(BaseModelArgs):
|
||||
sliding_window_pattern: int = 4
|
||||
|
||||
|
||||
class LayerNorm2D(nn.Module):
|
||||
def __init__(self, d1, d2, eps):
|
||||
super().__init__()
|
||||
self.weight = mx.zeros((d1, d2))
|
||||
self.eps = eps
|
||||
|
||||
def __call__(self, x):
|
||||
return self.weight * mx.fast.layer_norm(x, None, None, self.eps)
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs, layer_idx: int):
|
||||
super().__init__()
|
||||
@ -64,11 +55,7 @@ class Attention(nn.Module):
|
||||
|
||||
self.rope = nn.RoPE(head_dim, traditional=True, base=args.rope_theta)
|
||||
|
||||
self.sliding_window = (
|
||||
args.sliding_window
|
||||
if (layer_idx + 1) % args.sliding_window_pattern != 0
|
||||
else None
|
||||
)
|
||||
self.use_sliding_window = (layer_idx + 1) % args.sliding_window_pattern != 0
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
@ -85,7 +72,7 @@ class Attention(nn.Module):
|
||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
# Apply RoPE only if sliding window is enabled
|
||||
if self.sliding_window is not None:
|
||||
if self.use_sliding_window:
|
||||
if cache is None:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
@ -95,13 +82,11 @@ class Attention(nn.Module):
|
||||
|
||||
if cache is not None:
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
# Apply sliding window attention if enabled
|
||||
if self.sliding_window is not None:
|
||||
window_size = self.sliding_window
|
||||
keys = keys[..., -window_size:, :]
|
||||
values = values[..., -window_size:, :]
|
||||
if mask is not None:
|
||||
mask = mask[..., -window_size:]
|
||||
|
||||
if self.use_sliding_window and mask is not None:
|
||||
key_len = keys.shape[-2]
|
||||
if mask.shape[-1] != key_len:
|
||||
mask = mask[..., -key_len:]
|
||||
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
@ -170,7 +155,12 @@ class CohereModel(nn.Module):
|
||||
):
|
||||
h = self.embed_tokens(inputs)
|
||||
|
||||
mask = create_attention_mask(h, cache, reference_idx=self.args.sliding_window_pattern - 1)
|
||||
T = h.shape[1]
|
||||
if T > 1:
|
||||
offset = cache[0].offset if cache else 0
|
||||
mask = create_causal_mask(T, offset).astype(h.dtype)
|
||||
else:
|
||||
mask = None
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
@ -197,14 +187,19 @@ class Model(nn.Module):
|
||||
out = self.model.embed_tokens.as_linear(out)
|
||||
out = out * self.model.args.logit_scale
|
||||
return out
|
||||
|
||||
|
||||
def make_cache(self):
|
||||
caches = []
|
||||
for i in range(self.args.num_hidden_layers):
|
||||
if i % self.args.sliding_window_pattern == self.args.sliding_window_pattern - 1:
|
||||
if (
|
||||
i % self.args.sliding_window_pattern
|
||||
== self.args.sliding_window_pattern - 1
|
||||
):
|
||||
caches.append(KVCache())
|
||||
else:
|
||||
caches.append(RotatingKVCache(max_size=self.args.sliding_window, keep=0))
|
||||
caches.append(
|
||||
RotatingKVCache(max_size=self.args.sliding_window, keep=0)
|
||||
)
|
||||
return caches
|
||||
|
||||
@property
|
||||
|
Loading…
Reference in New Issue
Block a user