mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 02:33:23 +08:00
Merge branch 'ml-explore:main' into adding-dpo-training
This commit is contained in:
commit
4b44434c54
@ -295,7 +295,9 @@ class MLXLM(LM):
|
||||
completions = []
|
||||
|
||||
for context, until in tqdm(zip(contexts, untils), total=len(contexts)):
|
||||
context = self._tokenize(context)
|
||||
context = self.tokenizer.encode(
|
||||
context, add_special_tokens=not self.use_chat_template
|
||||
)
|
||||
max_tokens = min(
|
||||
self._max_tokens,
|
||||
self.tokenizer.model_max_length - len(context),
|
||||
|
@ -378,9 +378,11 @@ class DeepseekV2Model(nn.Module):
|
||||
# rank=pipeline_size-1 gets the first
|
||||
self.pipeline_rank = group.rank()
|
||||
self.pipeline_size = group.size()
|
||||
layers_per_rank = (
|
||||
len(self.layers) + self.pipeline_size - 1
|
||||
) // self.pipeline_size
|
||||
layers_per_rank = len(self.layers) // self.pipeline_size
|
||||
extra = len(self.layers) - layers_per_rank * self.pipeline_size
|
||||
if self.pipeline_rank < extra:
|
||||
layers_per_rank += 1
|
||||
|
||||
self.start_idx = (self.pipeline_size - self.pipeline_rank - 1) * layers_per_rank
|
||||
self.end_idx = self.start_idx + layers_per_rank
|
||||
self.num_layers = layers_per_rank
|
||||
|
@ -410,9 +410,10 @@ class DeepseekV3Model(nn.Module):
|
||||
# rank=pipeline_size-1 gets the first
|
||||
self.pipeline_rank = group.rank()
|
||||
self.pipeline_size = group.size()
|
||||
layers_per_rank = (
|
||||
len(self.layers) + self.pipeline_size - 1
|
||||
) // self.pipeline_size
|
||||
layers_per_rank = len(self.layers) // self.pipeline_size
|
||||
extra = len(self.layers) - layers_per_rank * self.pipeline_size
|
||||
if self.pipeline_rank < extra:
|
||||
layers_per_rank += 1
|
||||
self.start_idx = (self.pipeline_size - self.pipeline_rank - 1) * layers_per_rank
|
||||
self.end_idx = self.start_idx + layers_per_rank
|
||||
self.layers = self.layers[: self.end_idx]
|
||||
|
@ -233,8 +233,8 @@ def train(
|
||||
n_tokens = 0
|
||||
steps = 0
|
||||
trained_tokens = 0
|
||||
train_time = 0
|
||||
# Main training loop
|
||||
start = time.perf_counter()
|
||||
for it, batch in zip(
|
||||
range(1, args.iters + 1),
|
||||
iterate_batches(
|
||||
@ -245,10 +245,11 @@ def train(
|
||||
train=True,
|
||||
),
|
||||
):
|
||||
tic = time.perf_counter()
|
||||
# Report validation loss if needed, the first validation loss
|
||||
# is always measured before any training.
|
||||
if it == 1 or it % args.steps_per_eval == 0 or it == args.iters:
|
||||
stop = time.perf_counter()
|
||||
tic = time.perf_counter()
|
||||
val_loss = evaluate(
|
||||
model=model,
|
||||
dataset=val_dataset,
|
||||
@ -259,7 +260,7 @@ def train(
|
||||
max_seq_length=args.max_seq_length,
|
||||
iterate_batches=iterate_batches,
|
||||
)
|
||||
val_time = time.perf_counter() - stop
|
||||
val_time = time.perf_counter() - tic
|
||||
if rank == 0:
|
||||
print(
|
||||
f"Iter {it}: "
|
||||
@ -276,24 +277,23 @@ def train(
|
||||
}
|
||||
training_callback.on_val_loss_report(val_info)
|
||||
|
||||
start = time.perf_counter()
|
||||
tic = time.perf_counter()
|
||||
|
||||
lvalue, toks = step(batch)
|
||||
losses += lvalue
|
||||
n_tokens += toks
|
||||
steps += 1
|
||||
mx.eval(state, losses, n_tokens)
|
||||
train_time += time.perf_counter() - tic
|
||||
|
||||
# Report training loss if needed
|
||||
if it % args.steps_per_report == 0 or it == args.iters:
|
||||
stop = time.perf_counter()
|
||||
|
||||
train_loss = mx.distributed.all_sum(losses, stream=mx.cpu).item()
|
||||
train_loss /= steps * mx.distributed.init().size()
|
||||
n_tokens = mx.distributed.all_sum(n_tokens, stream=mx.cpu).item()
|
||||
learning_rate = optimizer.learning_rate.item()
|
||||
it_sec = args.steps_per_report / (stop - start)
|
||||
tokens_sec = float(n_tokens) / (stop - start)
|
||||
it_sec = args.steps_per_report / train_time
|
||||
tokens_sec = float(n_tokens) / train_time
|
||||
trained_tokens += n_tokens
|
||||
peak_mem = mx.metal.get_peak_memory() / 1e9
|
||||
if rank == 0:
|
||||
@ -322,7 +322,7 @@ def train(
|
||||
losses = 0
|
||||
n_tokens = 0
|
||||
steps = 0
|
||||
start = time.perf_counter()
|
||||
train_time = 0
|
||||
|
||||
# Save adapter weights
|
||||
if it % args.steps_per_save == 0:
|
||||
|
@ -89,6 +89,7 @@ def linear_to_lora_layers(
|
||||
"mixtral",
|
||||
"nemotron",
|
||||
"stablelm",
|
||||
"hunyuan",
|
||||
"qwen2",
|
||||
"qwen2_moe",
|
||||
"phimoe",
|
||||
|
@ -13,7 +13,18 @@ import time
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from textwrap import dedent
|
||||
from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, Type, Union
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
Generator,
|
||||
List,
|
||||
NamedTuple,
|
||||
Optional,
|
||||
Tuple,
|
||||
Type,
|
||||
Union,
|
||||
)
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
@ -65,6 +76,7 @@ class GenerationResponse:
|
||||
Args:
|
||||
text (str): The next segment of decoded text. This can be an empty string.
|
||||
token (int): The next token.
|
||||
from_draft (bool): Whether the token was generated by the draft model.
|
||||
logprobs (mx.array): A vector of log probabilities.
|
||||
prompt_tokens (int): The number of tokens in the prompt.
|
||||
prompt_tps (float): The prompt processing tokens-per-second.
|
||||
@ -77,6 +89,7 @@ class GenerationResponse:
|
||||
text: str
|
||||
token: int
|
||||
logprobs: mx.array
|
||||
from_draft: bool
|
||||
prompt_tokens: int
|
||||
prompt_tps: float
|
||||
generation_tokens: int
|
||||
@ -338,7 +351,7 @@ def speculative_generate_step(
|
||||
kv_bits: Optional[int] = None,
|
||||
kv_group_size: int = 64,
|
||||
quantized_kv_start: int = 0,
|
||||
) -> Generator[Tuple[mx.array, mx.array], None, None]:
|
||||
) -> Generator[Tuple[mx.array, mx.array, bool], None, None]:
|
||||
"""
|
||||
A generator producing token ids based on the given prompt from the model.
|
||||
|
||||
@ -365,7 +378,8 @@ def speculative_generate_step(
|
||||
when ``kv_bits`` is non-None. Default: ``0``.
|
||||
|
||||
Yields:
|
||||
Tuple[mx.array, mx.array]: One token and a vector of log probabilities.
|
||||
Tuple[mx.array, mx.array, bool]: One token, a vector of log probabilities,
|
||||
and a bool indicating if the token was generated by the draft model
|
||||
"""
|
||||
|
||||
y = prompt
|
||||
@ -450,12 +464,12 @@ def speculative_generate_step(
|
||||
break
|
||||
n += 1
|
||||
ntoks += 1
|
||||
yield tn, lpn
|
||||
yield tn, lpn, True
|
||||
if ntoks == max_tokens:
|
||||
break
|
||||
if ntoks < max_tokens:
|
||||
ntoks += 1
|
||||
yield tokens[n], logprobs[n]
|
||||
yield tokens[n], logprobs[n], False
|
||||
|
||||
if ntoks == max_tokens:
|
||||
break
|
||||
@ -463,7 +477,7 @@ def speculative_generate_step(
|
||||
y = mx.array([tokens[n]], mx.uint32)
|
||||
draft_y = y
|
||||
|
||||
# If we accpeted all the draft tokens, include the last
|
||||
# If we accepted all the draft tokens, include the last
|
||||
# draft token in the next draft step since it hasn't been
|
||||
# processed yet by the draft model
|
||||
if n == num_draft:
|
||||
@ -518,6 +532,10 @@ def stream_generate(
|
||||
if draft_model is None:
|
||||
kwargs.pop("num_draft_tokens", None)
|
||||
token_generator = generate_step(prompt, model, **kwargs)
|
||||
# from_draft always false for non-speculative generation
|
||||
token_generator = (
|
||||
(token, logprobs, False) for token, logprobs in token_generator
|
||||
)
|
||||
else:
|
||||
kwargs.pop("max_kv_size", None)
|
||||
token_generator = speculative_generate_step(
|
||||
@ -526,7 +544,7 @@ def stream_generate(
|
||||
with wired_limit(model, [generation_stream]):
|
||||
detokenizer.reset()
|
||||
tic = time.perf_counter()
|
||||
for n, (token, logprobs) in enumerate(token_generator):
|
||||
for n, (token, logprobs, from_draft) in enumerate(token_generator):
|
||||
if n == 0:
|
||||
prompt_time = time.perf_counter() - tic
|
||||
prompt_tps = prompt.size / prompt_time
|
||||
@ -540,6 +558,7 @@ def stream_generate(
|
||||
text=detokenizer.last_segment,
|
||||
token=token,
|
||||
logprobs=logprobs,
|
||||
from_draft=from_draft,
|
||||
prompt_tokens=prompt.size,
|
||||
prompt_tps=prompt_tps,
|
||||
generation_tokens=n + 1,
|
||||
@ -553,6 +572,7 @@ def stream_generate(
|
||||
text=detokenizer.last_segment,
|
||||
token=token,
|
||||
logprobs=logprobs,
|
||||
from_draft=from_draft,
|
||||
prompt_tokens=prompt.size,
|
||||
prompt_tps=prompt_tps,
|
||||
generation_tokens=n + 1,
|
||||
|
@ -1,17 +1,24 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import unittest
|
||||
from typing import List
|
||||
|
||||
from mlx_lm.sample_utils import make_logits_processors
|
||||
from mlx_lm.utils import generate, load
|
||||
from mlx_lm.utils import (
|
||||
GenerationResponse,
|
||||
generate,
|
||||
load,
|
||||
make_sampler,
|
||||
stream_generate,
|
||||
)
|
||||
|
||||
|
||||
class TestGenerate(unittest.TestCase):
|
||||
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
HF_MODEL_PATH = "mlx-community/Qwen1.5-0.5B-Chat-4bit"
|
||||
cls.model, cls.tokenizer = load(HF_MODEL_PATH)
|
||||
cls.HF_MODEL_PATH = "mlx-community/Qwen1.5-0.5B-Chat-4bit"
|
||||
cls.model, cls.tokenizer = load(cls.HF_MODEL_PATH)
|
||||
|
||||
def test_generate(self):
|
||||
# Simple test that generation runs
|
||||
@ -51,6 +58,34 @@ class TestGenerate(unittest.TestCase):
|
||||
)
|
||||
self.assertEqual(len(all_toks), len(init_toks) + 5)
|
||||
|
||||
def test_stream_generate_speculative(self):
|
||||
# Use same model as draft model, this is not a speed test
|
||||
draft_model, _ = load(self.HF_MODEL_PATH)
|
||||
|
||||
results: List[GenerationResponse] = []
|
||||
drafted: List[bool] = []
|
||||
|
||||
# make a determinate sampler
|
||||
sampler = make_sampler(temp=0.0)
|
||||
|
||||
for generation_result in stream_generate(
|
||||
model=self.model,
|
||||
tokenizer=self.tokenizer,
|
||||
prompt="hello",
|
||||
max_tokens=5,
|
||||
draft_model=draft_model,
|
||||
num_draft_tokens=2,
|
||||
sampler=sampler,
|
||||
):
|
||||
drafted.append(generation_result.from_draft)
|
||||
results.append(generation_result)
|
||||
|
||||
self.assertEqual(len(results), 5)
|
||||
# since num_draft_tokens is 2 and draft model is the same, the
|
||||
# first 2 generations should be drafts, the third should come
|
||||
# from the target model, and last two should be drafts
|
||||
self.assertEqual(drafted, [True, True, False, True, True])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
@ -195,6 +195,8 @@ def transcribe(
|
||||
seek_points.append(0)
|
||||
if len(seek_points) % 2 == 1:
|
||||
seek_points.append(content_frames)
|
||||
else:
|
||||
seek_points[-1] = min(content_frames, seek_points[-1])
|
||||
seek_clips: List[Tuple[int, int]] = list(zip(seek_points[::2], seek_points[1::2]))
|
||||
|
||||
punctuation = "\"'“¿([{-\"'.。,,!!??::”)]}、"
|
||||
|
Loading…
Reference in New Issue
Block a user