mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00
Allow the entire model to be targed for LoRA and DoRA fine tuning: LoRA and DoRA embeddings with small DoRALinear bug fix (#914)
* feature: LoRA adapter for Embeddings * feature: wire in LoRAEmbedding into the tuner. Allow the embedding and non model.layers Linear layers to be targeted for fine tuning * feature: DoRA adapter for Embeddings * feature: wire in DoRAEmbedding * bugfix: ensure self.m is recalculated when the linear layer is changed in DoRALinear.from_linear * refactor: prefer from_base over from_linear or from_embedding. prefer fuse over to_linear or to_embedding * cleanup: remove unused imports in test_dora.py * refactor: remove unnecessary non_layer_modules * cleanup: remove wrong comments for lora embedding dropout. remove uncessary parens in dora embedding dropout * nits --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
c50971e860
commit
4e01700816
@ -6,8 +6,8 @@ from pathlib import Path
|
|||||||
from mlx.utils import tree_flatten, tree_unflatten
|
from mlx.utils import tree_flatten, tree_unflatten
|
||||||
|
|
||||||
from .gguf import convert_to_gguf
|
from .gguf import convert_to_gguf
|
||||||
from .tuner.dora import DoRALinear
|
from .tuner.dora import DoRAEmbedding, DoRALinear
|
||||||
from .tuner.lora import LoRALinear, LoRASwitchLinear
|
from .tuner.lora import LoRAEmbedding, LoRALinear, LoRASwitchLinear
|
||||||
from .tuner.utils import apply_lora_layers, dequantize
|
from .tuner.utils import apply_lora_layers, dequantize
|
||||||
from .utils import (
|
from .utils import (
|
||||||
fetch_from_hub,
|
fetch_from_hub,
|
||||||
@ -80,9 +80,11 @@ def main() -> None:
|
|||||||
model = apply_lora_layers(model, args.adapter_path)
|
model = apply_lora_layers(model, args.adapter_path)
|
||||||
|
|
||||||
fused_linears = [
|
fused_linears = [
|
||||||
(n, m.to_linear())
|
(n, m.fuse())
|
||||||
for n, m in model.named_modules()
|
for n, m in model.named_modules()
|
||||||
if isinstance(m, (LoRASwitchLinear, LoRALinear, DoRALinear))
|
if isinstance(
|
||||||
|
m, (LoRASwitchLinear, LoRALinear, LoRAEmbedding, DoRALinear, DoRAEmbedding)
|
||||||
|
)
|
||||||
]
|
]
|
||||||
|
|
||||||
model.update_modules(tree_unflatten(fused_linears))
|
model.update_modules(tree_unflatten(fused_linears))
|
||||||
|
@ -8,7 +8,7 @@ import mlx.nn as nn
|
|||||||
|
|
||||||
class DoRALinear(nn.Module):
|
class DoRALinear(nn.Module):
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def from_linear(
|
def from_base(
|
||||||
linear: nn.Linear,
|
linear: nn.Linear,
|
||||||
r: int = 8,
|
r: int = 8,
|
||||||
dropout: float = 0.0,
|
dropout: float = 0.0,
|
||||||
@ -25,10 +25,10 @@ class DoRALinear(nn.Module):
|
|||||||
dropout=dropout,
|
dropout=dropout,
|
||||||
scale=scale,
|
scale=scale,
|
||||||
)
|
)
|
||||||
dora_lin.linear = linear
|
dora_lin.set_linear(linear)
|
||||||
return dora_lin
|
return dora_lin
|
||||||
|
|
||||||
def to_linear(self, de_quantize: bool = False):
|
def fuse(self, de_quantize: bool = False):
|
||||||
linear = self.linear
|
linear = self.linear
|
||||||
bias = "bias" in linear
|
bias = "bias" in linear
|
||||||
weight = linear.weight
|
weight = linear.weight
|
||||||
@ -61,7 +61,7 @@ class DoRALinear(nn.Module):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
# Regular linear layer weights
|
# Regular linear layer weights
|
||||||
self.linear = nn.Linear(input_dims, output_dims, bias=bias)
|
self.set_linear(nn.Linear(input_dims, output_dims, bias=bias))
|
||||||
self.dropout = nn.Dropout(p=dropout)
|
self.dropout = nn.Dropout(p=dropout)
|
||||||
|
|
||||||
# Scale for low-rank update
|
# Scale for low-rank update
|
||||||
@ -75,6 +75,9 @@ class DoRALinear(nn.Module):
|
|||||||
shape=(input_dims, r),
|
shape=(input_dims, r),
|
||||||
)
|
)
|
||||||
self.lora_b = mx.zeros(shape=(r, output_dims))
|
self.lora_b = mx.zeros(shape=(r, output_dims))
|
||||||
|
|
||||||
|
def set_linear(self, linear: nn.Linear):
|
||||||
|
self.linear = linear
|
||||||
self.m = mx.linalg.norm(self.linear.weight, axis=1)
|
self.m = mx.linalg.norm(self.linear.weight, axis=1)
|
||||||
|
|
||||||
def __call__(self, x):
|
def __call__(self, x):
|
||||||
@ -93,3 +96,102 @@ class DoRALinear(nn.Module):
|
|||||||
if "bias" in self.linear:
|
if "bias" in self.linear:
|
||||||
out = out + self.linear.bias
|
out = out + self.linear.bias
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class DoRAEmbedding(nn.Module):
|
||||||
|
def from_base(
|
||||||
|
embedding: nn.Embedding,
|
||||||
|
r: int = 8,
|
||||||
|
dropout: float = 0.0,
|
||||||
|
scale: float = 20.0,
|
||||||
|
):
|
||||||
|
num_embeddings, dims = embedding.weight.shape
|
||||||
|
|
||||||
|
# TODO support quantized weights in DoRALinear
|
||||||
|
if isinstance(embedding, nn.QuantizedLinear):
|
||||||
|
raise ValueError("DoRAEmbedding does not yet support quantization.")
|
||||||
|
dora_embedding = DoRAEmbedding(
|
||||||
|
num_embeddings=num_embeddings,
|
||||||
|
dims=dims,
|
||||||
|
r=r,
|
||||||
|
dropout=dropout,
|
||||||
|
scale=scale,
|
||||||
|
)
|
||||||
|
dora_embedding.set_embedding(embedding)
|
||||||
|
return dora_embedding
|
||||||
|
|
||||||
|
def fuse(self, de_quantize: bool = False):
|
||||||
|
embedding = self.embedding
|
||||||
|
weight = embedding.weight
|
||||||
|
|
||||||
|
# Use the same type as the linear weight if not quantized
|
||||||
|
dtype = weight.dtype
|
||||||
|
|
||||||
|
num_embeddings, dims = weight.shape
|
||||||
|
fused_embedding = nn.Embedding(num_embeddings, dims)
|
||||||
|
|
||||||
|
lora_a = (self.scale * self.lora_a).astype(dtype)
|
||||||
|
lora_b = self.lora_b.astype(dtype)
|
||||||
|
weight = weight + lora_a @ lora_b
|
||||||
|
norm_scale = self.m / mx.linalg.norm(weight, axis=1)
|
||||||
|
fused_embedding.weight = norm_scale[:, None] * weight
|
||||||
|
|
||||||
|
return fused_embedding
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_embeddings: int,
|
||||||
|
dims: int,
|
||||||
|
r: int = 8,
|
||||||
|
dropout: float = 0.0,
|
||||||
|
scale: float = 20.0,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
# Regular embedding layer weights
|
||||||
|
self.set_embedding(nn.Embedding(num_embeddings, dims))
|
||||||
|
self.dropout = nn.Dropout(p=dropout)
|
||||||
|
|
||||||
|
# Scale for low-rank update
|
||||||
|
self.scale = scale
|
||||||
|
|
||||||
|
# Low rank lora weights
|
||||||
|
scale = 1 / math.sqrt(num_embeddings)
|
||||||
|
self.lora_a = mx.random.uniform(
|
||||||
|
low=-scale,
|
||||||
|
high=scale,
|
||||||
|
shape=(num_embeddings, r),
|
||||||
|
)
|
||||||
|
self.lora_b = mx.zeros(shape=(r, dims))
|
||||||
|
|
||||||
|
def set_embedding(self, embedding: nn.Module):
|
||||||
|
self.embedding = embedding
|
||||||
|
self.m = mx.linalg.norm(embedding.weight, axis=1)
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
y = self.embedding(x)
|
||||||
|
z = self.scale * self.lora_a[x] @ self.lora_b
|
||||||
|
out = y + self.dropout(z).astype(y.dtype)
|
||||||
|
|
||||||
|
# Compute the norm of the adapted weights for the individual embeddings
|
||||||
|
adapted = y + z
|
||||||
|
denom = mx.stop_gradient(mx.linalg.norm(adapted, axis=-1))
|
||||||
|
|
||||||
|
# Remove the norm and scale by the learned magnitude
|
||||||
|
out = (self.m[x] / denom)[..., None] * out
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
def as_linear(self, x):
|
||||||
|
y = self.embedding.as_linear(x)
|
||||||
|
z = (self.dropout(x) @ self.lora_b.T) @ self.lora_a.T
|
||||||
|
out = y + (self.scale * z).astype(x.dtype)
|
||||||
|
|
||||||
|
# Compute the norm of the adapted weights
|
||||||
|
adapted = self.embedding.weight + (self.scale * self.lora_a) @ self.lora_b
|
||||||
|
denom = mx.stop_gradient(mx.linalg.norm(adapted, axis=1))
|
||||||
|
|
||||||
|
# Remove the norm and scale by the learned magnitude
|
||||||
|
out = (self.m / denom) * out
|
||||||
|
|
||||||
|
return out
|
||||||
|
@ -10,7 +10,7 @@ from ..models.switch_layers import QuantizedSwitchLinear, SwitchLinear
|
|||||||
|
|
||||||
class LoRALinear(nn.Module):
|
class LoRALinear(nn.Module):
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def from_linear(
|
def from_base(
|
||||||
linear: nn.Linear,
|
linear: nn.Linear,
|
||||||
r: int = 8,
|
r: int = 8,
|
||||||
dropout: float = 0.0,
|
dropout: float = 0.0,
|
||||||
@ -31,7 +31,7 @@ class LoRALinear(nn.Module):
|
|||||||
lora_lin.linear = linear
|
lora_lin.linear = linear
|
||||||
return lora_lin
|
return lora_lin
|
||||||
|
|
||||||
def to_linear(self, de_quantize: bool = False):
|
def fuse(self, de_quantize: bool = False):
|
||||||
linear = self.linear
|
linear = self.linear
|
||||||
bias = "bias" in linear
|
bias = "bias" in linear
|
||||||
weight = linear.weight
|
weight = linear.weight
|
||||||
@ -41,7 +41,7 @@ class LoRALinear(nn.Module):
|
|||||||
dtype = weight.dtype
|
dtype = weight.dtype
|
||||||
|
|
||||||
if is_quantized:
|
if is_quantized:
|
||||||
dtype = mx.float16
|
dtype = linear.scales.dtype
|
||||||
weight = mx.dequantize(
|
weight = mx.dequantize(
|
||||||
weight,
|
weight,
|
||||||
linear.scales,
|
linear.scales,
|
||||||
@ -103,7 +103,7 @@ class LoRALinear(nn.Module):
|
|||||||
|
|
||||||
class LoRASwitchLinear(nn.Module):
|
class LoRASwitchLinear(nn.Module):
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def from_linear(
|
def from_base(
|
||||||
linear: nn.Module,
|
linear: nn.Module,
|
||||||
r: int = 8,
|
r: int = 8,
|
||||||
dropout: float = 0.0,
|
dropout: float = 0.0,
|
||||||
@ -120,7 +120,7 @@ class LoRASwitchLinear(nn.Module):
|
|||||||
lora_lin.linear = linear
|
lora_lin.linear = linear
|
||||||
return lora_lin
|
return lora_lin
|
||||||
|
|
||||||
def to_linear(self, de_quantize: bool = False):
|
def fuse(self, de_quantize: bool = False):
|
||||||
linear = self.linear
|
linear = self.linear
|
||||||
bias = "bias" in linear
|
bias = "bias" in linear
|
||||||
weight = linear.weight
|
weight = linear.weight
|
||||||
@ -191,3 +191,95 @@ class LoRASwitchLinear(nn.Module):
|
|||||||
z = z[..., None, :] @ self.lora_b[indices].swapaxes(-2, -1)
|
z = z[..., None, :] @ self.lora_b[indices].swapaxes(-2, -1)
|
||||||
|
|
||||||
return y + (self.scale * z).astype(x.dtype)
|
return y + (self.scale * z).astype(x.dtype)
|
||||||
|
|
||||||
|
|
||||||
|
class LoRAEmbedding(nn.Module):
|
||||||
|
@staticmethod
|
||||||
|
def from_base(
|
||||||
|
embedding: nn.Embedding,
|
||||||
|
r: int = 8,
|
||||||
|
dropout: float = 0.0,
|
||||||
|
scale: float = 20.0,
|
||||||
|
):
|
||||||
|
num_embeddings, dims = embedding.weight.shape
|
||||||
|
if isinstance(embedding, nn.QuantizedEmbedding):
|
||||||
|
dims *= 32 // embedding.bits
|
||||||
|
lora_embedding = LoRAEmbedding(
|
||||||
|
num_embeddings=num_embeddings,
|
||||||
|
dims=dims,
|
||||||
|
r=r,
|
||||||
|
dropout=dropout,
|
||||||
|
scale=scale,
|
||||||
|
)
|
||||||
|
lora_embedding.embedding = embedding
|
||||||
|
return lora_embedding
|
||||||
|
|
||||||
|
def fuse(self, de_quantize: bool = False):
|
||||||
|
embedding = self.embedding
|
||||||
|
weight = embedding.weight
|
||||||
|
is_quantized = isinstance(embedding, nn.QuantizedEmbedding)
|
||||||
|
|
||||||
|
# Use the same type as the linear weight if not quantized
|
||||||
|
dtype = weight.dtype
|
||||||
|
|
||||||
|
if is_quantized:
|
||||||
|
dtype = embedding.scales.dtype
|
||||||
|
weight = mx.dequantize(
|
||||||
|
weight,
|
||||||
|
embedding.scales,
|
||||||
|
embedding.biases,
|
||||||
|
embedding.group_size,
|
||||||
|
embedding.bits,
|
||||||
|
)
|
||||||
|
num_embeddings, dims = weight.shape
|
||||||
|
fused_embedding = nn.Embedding(num_embeddings, dims)
|
||||||
|
|
||||||
|
lora_a = (self.scale * self.lora_a).astype(dtype)
|
||||||
|
lora_b = self.lora_b.astype(dtype)
|
||||||
|
fused_embedding.weight = weight + lora_a @ lora_b
|
||||||
|
|
||||||
|
if is_quantized and not de_quantize:
|
||||||
|
fused_embedding = nn.QuantizedEmbedding.from_embedding(
|
||||||
|
fused_embedding,
|
||||||
|
embedding.group_size,
|
||||||
|
embedding.bits,
|
||||||
|
)
|
||||||
|
|
||||||
|
return fused_embedding
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_embeddings: int,
|
||||||
|
dims: int,
|
||||||
|
r: int = 8,
|
||||||
|
dropout: float = 0.0,
|
||||||
|
scale: float = 20.0,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
# Regular embedding layer
|
||||||
|
self.embedding = nn.Embedding(num_embeddings, dims)
|
||||||
|
self.dropout = nn.Dropout(p=dropout)
|
||||||
|
|
||||||
|
# Scale for low-rank update
|
||||||
|
self.scale = scale
|
||||||
|
|
||||||
|
# Low rank lora weights
|
||||||
|
scale = 1 / math.sqrt(num_embeddings)
|
||||||
|
self.lora_a = mx.random.uniform(
|
||||||
|
low=-scale,
|
||||||
|
high=scale,
|
||||||
|
shape=(num_embeddings, r),
|
||||||
|
)
|
||||||
|
self.lora_b = mx.zeros(shape=(r, dims))
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
y = self.embedding(x)
|
||||||
|
z = self.dropout(self.lora_a[x] @ self.lora_b)
|
||||||
|
out = y + (self.scale * z).astype(y.dtype)
|
||||||
|
return out
|
||||||
|
|
||||||
|
def as_linear(self, x):
|
||||||
|
y = self.embedding.as_linear(x)
|
||||||
|
z = (self.dropout(x) @ self.lora_b.T) @ self.lora_a.T
|
||||||
|
return y + (self.scale * z).astype(x.dtype)
|
||||||
|
@ -10,8 +10,8 @@ import mlx.optimizers as opt
|
|||||||
from mlx.utils import tree_flatten, tree_unflatten
|
from mlx.utils import tree_flatten, tree_unflatten
|
||||||
|
|
||||||
from ..models.switch_layers import QuantizedSwitchLinear, SwitchLinear
|
from ..models.switch_layers import QuantizedSwitchLinear, SwitchLinear
|
||||||
from .dora import DoRALinear
|
from .dora import DoRAEmbedding, DoRALinear
|
||||||
from .lora import LoRALinear, LoRASwitchLinear
|
from .lora import LoRAEmbedding, LoRALinear, LoRASwitchLinear
|
||||||
|
|
||||||
|
|
||||||
def build_schedule(schedule_config: Dict):
|
def build_schedule(schedule_config: Dict):
|
||||||
@ -71,12 +71,14 @@ def linear_to_lora_layers(
|
|||||||
if use_dora:
|
if use_dora:
|
||||||
raise ValueError(f"{type(layer).__name__} doesn't support DoRA yet.")
|
raise ValueError(f"{type(layer).__name__} doesn't support DoRA yet.")
|
||||||
LoRALayer = LoRASwitchLinear
|
LoRALayer = LoRASwitchLinear
|
||||||
|
elif isinstance(layer, (nn.Embedding, nn.QuantizedEmbedding)):
|
||||||
|
LoRALayer = DoRAEmbedding if use_dora else LoRAEmbedding
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Can't convert layer of type {type(layer).__name__} to LoRA"
|
f"Can't convert layer of type {type(layer).__name__} to LoRA"
|
||||||
)
|
)
|
||||||
|
|
||||||
return LoRALayer.from_linear(
|
return LoRALayer.from_base(
|
||||||
layer,
|
layer,
|
||||||
r=config["rank"],
|
r=config["rank"],
|
||||||
scale=config["scale"],
|
scale=config["scale"],
|
||||||
@ -130,7 +132,12 @@ def linear_to_lora_layers(
|
|||||||
|
|
||||||
for l in model.layers[num_layers - num_lora_layers :]:
|
for l in model.layers[num_layers - num_lora_layers :]:
|
||||||
lora_layers = [(k, to_lora(m)) for k, m in l.named_modules() if k in keys]
|
lora_layers = [(k, to_lora(m)) for k, m in l.named_modules() if k in keys]
|
||||||
l.update_modules(tree_unflatten(lora_layers))
|
if lora_layers:
|
||||||
|
l.update_modules(tree_unflatten(lora_layers))
|
||||||
|
|
||||||
|
lora_modules = [(k, to_lora(m)) for k, m in model.named_modules() if k in keys]
|
||||||
|
if lora_modules:
|
||||||
|
model.update_modules(tree_unflatten(lora_modules))
|
||||||
|
|
||||||
|
|
||||||
def apply_lora_layers(model: nn.Module, adapter_path: str) -> nn.Module:
|
def apply_lora_layers(model: nn.Module, adapter_path: str) -> nn.Module:
|
||||||
|
@ -6,10 +6,13 @@ import unittest
|
|||||||
from io import StringIO
|
from io import StringIO
|
||||||
from unittest.mock import MagicMock
|
from unittest.mock import MagicMock
|
||||||
|
|
||||||
|
import mlx.core as mx
|
||||||
|
import mlx.nn as nn
|
||||||
import mlx.optimizers as opt
|
import mlx.optimizers as opt
|
||||||
from mlx.utils import tree_flatten
|
from mlx.utils import tree_flatten
|
||||||
from mlx_lm import lora, tuner
|
from mlx_lm import lora, tuner
|
||||||
from mlx_lm.tuner.lora import LoRALinear
|
from mlx_lm.tuner.dora import DoRAEmbedding
|
||||||
|
from mlx_lm.tuner.lora import LoRAEmbedding, LoRALinear
|
||||||
from mlx_lm.tuner.trainer import evaluate
|
from mlx_lm.tuner.trainer import evaluate
|
||||||
from mlx_lm.tuner.utils import build_schedule
|
from mlx_lm.tuner.utils import build_schedule
|
||||||
|
|
||||||
@ -33,11 +36,12 @@ class TestLora(unittest.TestCase):
|
|||||||
num_attention_heads=4,
|
num_attention_heads=4,
|
||||||
rms_norm_eps=1e-5,
|
rms_norm_eps=1e-5,
|
||||||
vocab_size=10_000,
|
vocab_size=10_000,
|
||||||
|
tie_word_embeddings=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
lora_layers = 4
|
lora_layers = 4
|
||||||
|
|
||||||
def check_config(params):
|
def check_config(params, expected_trainable_parameters=None):
|
||||||
n_keys = 2
|
n_keys = 2
|
||||||
if "keys" in params:
|
if "keys" in params:
|
||||||
n_keys = len(params["keys"])
|
n_keys = len(params["keys"])
|
||||||
@ -47,9 +51,11 @@ class TestLora(unittest.TestCase):
|
|||||||
trainable_params = sum(
|
trainable_params = sum(
|
||||||
v.size for _, v in tree_flatten(model.trainable_parameters())
|
v.size for _, v in tree_flatten(model.trainable_parameters())
|
||||||
)
|
)
|
||||||
self.assertEqual(
|
|
||||||
trainable_params, lora_layers * params["rank"] * 1024 * 2 * n_keys
|
expected_trainable_parameters = expected_trainable_parameters or (
|
||||||
|
lora_layers * params["rank"] * args.hidden_size * 2 * n_keys
|
||||||
)
|
)
|
||||||
|
self.assertEqual(trainable_params, expected_trainable_parameters)
|
||||||
|
|
||||||
params = {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0}
|
params = {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0}
|
||||||
check_config(params)
|
check_config(params)
|
||||||
@ -60,6 +66,22 @@ class TestLora(unittest.TestCase):
|
|||||||
params["keys"] = ["self_attn.k_proj"]
|
params["keys"] = ["self_attn.k_proj"]
|
||||||
check_config(params)
|
check_config(params)
|
||||||
|
|
||||||
|
params["keys"] = ["lm_head"]
|
||||||
|
check_config(
|
||||||
|
params,
|
||||||
|
expected_trainable_parameters=(
|
||||||
|
params["rank"] * (args.hidden_size + args.vocab_size)
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
params["keys"] = ["model.embed_tokens"]
|
||||||
|
check_config(
|
||||||
|
params,
|
||||||
|
expected_trainable_parameters=(
|
||||||
|
params["rank"] * (args.hidden_size + args.vocab_size)
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
def test_gpt_neox(self):
|
def test_gpt_neox(self):
|
||||||
from mlx_lm.models import gpt_neox
|
from mlx_lm.models import gpt_neox
|
||||||
|
|
||||||
@ -82,6 +104,66 @@ class TestLora(unittest.TestCase):
|
|||||||
model.freeze()
|
model.freeze()
|
||||||
tuner.utils.linear_to_lora_layers(model, num_lora_layers, params)
|
tuner.utils.linear_to_lora_layers(model, num_lora_layers, params)
|
||||||
|
|
||||||
|
def test_lora_embedding(self):
|
||||||
|
num_embeddings = 256
|
||||||
|
dims = 512
|
||||||
|
tokens = mx.array([1, 2, 3])
|
||||||
|
|
||||||
|
embedding = nn.QuantizedEmbedding(num_embeddings, dims)
|
||||||
|
dequantized_weight = mx.dequantize(
|
||||||
|
embedding.weight,
|
||||||
|
embedding.scales,
|
||||||
|
embedding.biases,
|
||||||
|
embedding.group_size,
|
||||||
|
embedding.bits,
|
||||||
|
)
|
||||||
|
lora_emb = LoRAEmbedding.from_base(embedding, r=8, dropout=0, scale=10)
|
||||||
|
new_embedding = lora_emb.fuse(de_quantize=True)
|
||||||
|
self.assertTrue(mx.array_equal(dequantized_weight, new_embedding.weight))
|
||||||
|
self.assertTrue(mx.array_equal(embedding(tokens), lora_emb(tokens)))
|
||||||
|
|
||||||
|
# as_linear
|
||||||
|
attn_output = mx.random.uniform(shape=(dims,))
|
||||||
|
embedding_lin_out = lora_emb.as_linear(attn_output)
|
||||||
|
self.assertEqual(embedding_lin_out.shape, (num_embeddings,))
|
||||||
|
self.assertTrue(
|
||||||
|
mx.array_equal(embedding_lin_out, embedding.as_linear(attn_output))
|
||||||
|
)
|
||||||
|
|
||||||
|
# change the value of lora_b and the embeddings will no longer be equal
|
||||||
|
lora_emb.lora_b = mx.random.uniform(shape=lora_emb.lora_b.shape)
|
||||||
|
new_embedding = lora_emb.fuse(de_quantize=True)
|
||||||
|
self.assertFalse(mx.array_equal(dequantized_weight, new_embedding.weight))
|
||||||
|
self.assertFalse(mx.array_equal(embedding(tokens), lora_emb(tokens)))
|
||||||
|
|
||||||
|
|
||||||
|
class TestDora(unittest.TestCase):
|
||||||
|
def test_dora_embedding(self):
|
||||||
|
num_embeddings = 256
|
||||||
|
dims = 512
|
||||||
|
tokens = mx.array([1, 2, 3])
|
||||||
|
|
||||||
|
embedding = nn.Embedding(num_embeddings, dims)
|
||||||
|
|
||||||
|
dora_emb = DoRAEmbedding.from_base(embedding, r=8, dropout=0, scale=10)
|
||||||
|
new_embedding = dora_emb.fuse()
|
||||||
|
self.assertTrue(mx.array_equal(embedding.weight, new_embedding.weight))
|
||||||
|
self.assertTrue(mx.array_equal(embedding(tokens), dora_emb(tokens)))
|
||||||
|
|
||||||
|
# as_linear
|
||||||
|
attn_output = mx.random.uniform(shape=(dims,))
|
||||||
|
embedding_lin_out = dora_emb.as_linear(attn_output)
|
||||||
|
self.assertEqual(embedding_lin_out.shape, (num_embeddings,))
|
||||||
|
self.assertTrue(
|
||||||
|
mx.array_equal(embedding_lin_out, embedding.as_linear(attn_output))
|
||||||
|
)
|
||||||
|
|
||||||
|
# change the value of lora_b and the embeddings will no longer be equal
|
||||||
|
dora_emb.lora_b = mx.random.uniform(shape=dora_emb.lora_b.shape)
|
||||||
|
new_embedding = dora_emb.fuse()
|
||||||
|
self.assertFalse(mx.array_equal(embedding.weight, new_embedding.weight))
|
||||||
|
self.assertFalse(mx.array_equal(embedding(tokens), dora_emb(tokens)))
|
||||||
|
|
||||||
|
|
||||||
class TestScheduleConfig(unittest.TestCase):
|
class TestScheduleConfig(unittest.TestCase):
|
||||||
def test_join(self):
|
def test_join(self):
|
Loading…
Reference in New Issue
Block a user