mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00
BERT implementation
This commit is contained in:
parent
ff3cc56c8d
commit
4e5b8ceafe
68
bert/README.md
Normal file
68
bert/README.md
Normal file
@ -0,0 +1,68 @@
|
||||
# mlxbert
|
||||
|
||||
A BERT implementation in Apple's new MLX framework.
|
||||
|
||||
## Dependency Installation
|
||||
|
||||
```sh
|
||||
poetry install --no-root
|
||||
```
|
||||
|
||||
If you don't want to do that, simply make sure you have the following dependencies installed:
|
||||
|
||||
- `mlx`
|
||||
- `transformers`
|
||||
- `numpy`
|
||||
|
||||
## Download and Convert
|
||||
|
||||
```
|
||||
python convert.py \
|
||||
--bert-model bert-base-uncased
|
||||
--mlx-model weights/bert-base-uncased.npz
|
||||
```
|
||||
|
||||
## Run the Model
|
||||
|
||||
Right now, this is just a test to show tha the outputs from mlx and huggingface don't change all that much.
|
||||
|
||||
```sh
|
||||
python model.py \
|
||||
--bert-model bert-base-uncased \
|
||||
--mlx-model weights/bert-base-uncased.npz
|
||||
```
|
||||
|
||||
Which will show the following outputs:
|
||||
```
|
||||
MLX BERT:
|
||||
[[[-0.17057164 0.08602728 -0.12471077 ... -0.09469379 -0.00275938
|
||||
0.28314582]
|
||||
[ 0.15222196 -0.48997563 -0.26665813 ... -0.19935863 -0.17162783
|
||||
-0.51360303]
|
||||
[ 0.9460105 0.1358298 -0.2945672 ... 0.00868467 -0.90271163
|
||||
-0.2785422 ]]]
|
||||
```
|
||||
|
||||
They can be compared against the 🤗 implementation with:
|
||||
|
||||
```sh
|
||||
python hf_model.py \
|
||||
--bert-model bert-base-uncased
|
||||
```
|
||||
|
||||
Which will show:
|
||||
```
|
||||
HF BERT:
|
||||
[[[-0.17057131 0.08602707 -0.12471108 ... -0.09469365 -0.00275959
|
||||
0.28314728]
|
||||
[ 0.15222463 -0.48997375 -0.26665992 ... -0.19936043 -0.17162988
|
||||
-0.5136028 ]
|
||||
[ 0.946011 0.13582966 -0.29456618 ... 0.00868565 -0.90271175
|
||||
-0.27854213]]]
|
||||
```
|
||||
|
||||
## To do's
|
||||
|
||||
- [x] fix position encodings
|
||||
- [x] bert large and cased variants loaded
|
||||
- [x] example usage
|
48
bert/convert.py
Normal file
48
bert/convert.py
Normal file
@ -0,0 +1,48 @@
|
||||
from transformers import BertModel
|
||||
|
||||
import argparse
|
||||
import numpy
|
||||
|
||||
|
||||
def replace_key(key: str) -> str:
|
||||
key = key.replace(".layer.", ".layers.")
|
||||
key = key.replace(".self.key.", ".key_proj.")
|
||||
key = key.replace(".self.query.", ".query_proj.")
|
||||
key = key.replace(".self.value.", ".value_proj.")
|
||||
key = key.replace(".attention.output.dense.", ".attention.out_proj.")
|
||||
key = key.replace(".attention.output.LayerNorm.", ".ln1.")
|
||||
key = key.replace(".output.LayerNorm.", ".ln2.")
|
||||
key = key.replace(".intermediate.dense.", ".linear1.")
|
||||
key = key.replace(".output.dense.", ".linear2.")
|
||||
key = key.replace(".LayerNorm.", ".norm.")
|
||||
key = key.replace("pooler.dense.", "pooler.")
|
||||
return key
|
||||
|
||||
|
||||
def convert(bert_model: str, mlx_model: str) -> None:
|
||||
model = BertModel.from_pretrained(bert_model)
|
||||
# save the tensors
|
||||
tensors = {
|
||||
replace_key(key): tensor.numpy() for key, tensor in model.state_dict().items()
|
||||
}
|
||||
numpy.savez(mlx_model, **tensors)
|
||||
# save the tokenizer
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Convert BERT weights to MLX.")
|
||||
parser.add_argument(
|
||||
"--bert-model",
|
||||
type=str,
|
||||
default="bert-base-uncased",
|
||||
help="The huggingface name of the BERT model to save.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mlx-model",
|
||||
type=str,
|
||||
default="weights/bert-base-uncased.npz",
|
||||
help="The output path for the MLX BERT weights.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
convert(args.bert_model, args.mlx_model)
|
36
bert/hf_model.py
Normal file
36
bert/hf_model.py
Normal file
@ -0,0 +1,36 @@
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
import argparse
|
||||
|
||||
|
||||
def run(bert_model: str):
|
||||
batch = [
|
||||
"This is an example of BERT working on MLX.",
|
||||
"A second string",
|
||||
"This is another string.",
|
||||
]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_model)
|
||||
torch_model = AutoModel.from_pretrained(bert_model)
|
||||
torch_tokens = tokenizer(batch, return_tensors="pt", padding=True)
|
||||
torch_forward = torch_model(**torch_tokens)
|
||||
torch_output = torch_forward.last_hidden_state.detach().numpy()
|
||||
torch_pooled = torch_forward.pooler_output.detach().numpy()
|
||||
|
||||
print("\n HF BERT:")
|
||||
print(torch_output)
|
||||
print("\n\n HF Pooled:")
|
||||
print(torch_pooled[0, :20])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--bert-model",
|
||||
type=str,
|
||||
default="bert-base-uncased",
|
||||
help="The huggingface name of the BERT model to save.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
run(args.bert_model)
|
246
bert/model.py
Normal file
246
bert/model.py
Normal file
@ -0,0 +1,246 @@
|
||||
from typing import Optional
|
||||
from dataclasses import dataclass
|
||||
from mlx.utils import tree_unflatten, tree_map
|
||||
from mlx.nn.layers.base import Module
|
||||
from mlx.nn.layers.linear import Linear
|
||||
from mlx.nn.layers.normalization import LayerNorm
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import argparse
|
||||
import numpy
|
||||
import math
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs:
|
||||
intermediate_size: int = 768
|
||||
num_attention_heads: int = 12
|
||||
num_hidden_layers: int = 12
|
||||
vocab_size: int = 30522
|
||||
attention_probs_dropout_prob: float = 0.1
|
||||
hidden_dropout_prob: float = 0.1
|
||||
layer_norm_eps: float = 1e-12
|
||||
max_position_embeddings: int = 512
|
||||
|
||||
|
||||
model_configs = {
|
||||
"bert-base-uncased": ModelArgs(),
|
||||
"bert-base-cased": ModelArgs(),
|
||||
"bert-large-uncased": ModelArgs(
|
||||
intermediate_size=1024, num_attention_heads=16, num_hidden_layers=24
|
||||
),
|
||||
"bert-large-cased": ModelArgs(
|
||||
intermediate_size=1024, num_attention_heads=16, num_hidden_layers=24
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
class MultiHeadAttention(Module):
|
||||
"""
|
||||
Minor update to the MultiHeadAttention module to ensure that the
|
||||
projections use bias.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dims: int,
|
||||
num_heads: int,
|
||||
query_input_dims: Optional[int] = None,
|
||||
key_input_dims: Optional[int] = None,
|
||||
value_input_dims: Optional[int] = None,
|
||||
value_dims: Optional[int] = None,
|
||||
value_output_dims: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if (dims % num_heads) != 0:
|
||||
raise ValueError(
|
||||
f"The input feature dimensions should be divisible by the number of heads ({dims} % {num_heads}) != 0"
|
||||
)
|
||||
|
||||
query_input_dims = query_input_dims or dims
|
||||
key_input_dims = key_input_dims or dims
|
||||
value_input_dims = value_input_dims or key_input_dims
|
||||
value_dims = value_dims or dims
|
||||
value_output_dims = value_output_dims or dims
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.query_proj = Linear(query_input_dims, dims, True)
|
||||
self.key_proj = Linear(key_input_dims, dims, True)
|
||||
self.value_proj = Linear(value_input_dims, value_dims, True)
|
||||
self.out_proj = Linear(value_dims, value_output_dims, True)
|
||||
|
||||
def __call__(self, queries, keys, values, mask=None):
|
||||
queries = self.query_proj(queries)
|
||||
keys = self.key_proj(keys)
|
||||
values = self.value_proj(values)
|
||||
|
||||
num_heads = self.num_heads
|
||||
B, L, D = queries.shape
|
||||
_, S, _ = keys.shape
|
||||
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 3, 1)
|
||||
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
# Dimensions are [batch x num heads x sequence x hidden dim]
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
scores = (queries * scale) @ keys
|
||||
if mask is not None:
|
||||
mask = self.converrt_mask_to_additive_causal_mask(mask)
|
||||
mask = mx.expand_dims(mask, (1, 2))
|
||||
mask = mx.broadcast_to(mask, scores.shape)
|
||||
scores = scores + mask.astype(scores.dtype)
|
||||
scores = mx.softmax(scores, axis=-1)
|
||||
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
||||
return self.out_proj(values_hat)
|
||||
|
||||
def converrt_mask_to_additive_causal_mask(
|
||||
self, mask: mx.array, dtype: mx.Dtype = mx.float32
|
||||
) -> mx.array:
|
||||
mask = mask == 0
|
||||
mask = mask.astype(dtype) * -1e9
|
||||
return mask
|
||||
|
||||
|
||||
class TransformerEncoderLayer(Module):
|
||||
"""
|
||||
A transformer encoder layer with (the original BERT) post-normalization.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dims: int,
|
||||
num_heads: int,
|
||||
mlp_dims: Optional[int] = None,
|
||||
layer_norm_eps: float = 1e-12,
|
||||
):
|
||||
super().__init__()
|
||||
mlp_dims = mlp_dims or dims * 4
|
||||
self.attention = MultiHeadAttention(dims, num_heads)
|
||||
self.ln1 = LayerNorm(dims, eps=layer_norm_eps)
|
||||
self.ln2 = LayerNorm(dims, eps=layer_norm_eps)
|
||||
self.linear1 = Linear(dims, mlp_dims)
|
||||
self.linear2 = Linear(mlp_dims, dims)
|
||||
self.gelu = nn.GELU()
|
||||
|
||||
def __call__(self, x, mask):
|
||||
attention_out = self.attention(x, x, x, mask)
|
||||
add_and_norm = self.ln1(x + attention_out)
|
||||
|
||||
ff = self.linear1(add_and_norm)
|
||||
ff_gelu = self.gelu(ff)
|
||||
ff_out = self.linear2(ff_gelu)
|
||||
x = self.ln2(ff_out + add_and_norm)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class TransformerEncoder(Module):
|
||||
def __init__(
|
||||
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
|
||||
):
|
||||
super().__init__()
|
||||
self.layers = [
|
||||
TransformerEncoderLayer(dims, num_heads, mlp_dims)
|
||||
for i in range(num_layers)
|
||||
]
|
||||
|
||||
def __call__(self, x, mask):
|
||||
for l in self.layers:
|
||||
x = l(x, mask)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class BertEmbeddings(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
self.word_embeddings = nn.Embedding(config.vocab_size, config.intermediate_size)
|
||||
self.token_type_embeddings = nn.Embedding(2, config.intermediate_size)
|
||||
self.position_embeddings = nn.Embedding(
|
||||
config.max_position_embeddings, config.intermediate_size
|
||||
)
|
||||
self.norm = nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps)
|
||||
|
||||
def __call__(self, input_ids: mx.array, token_type_ids: mx.array) -> mx.array:
|
||||
words = self.word_embeddings(input_ids)
|
||||
position = self.position_embeddings(
|
||||
mx.broadcast_to(mx.arange(input_ids.shape[1]), input_ids.shape)
|
||||
)
|
||||
token_types = self.token_type_embeddings(token_type_ids)
|
||||
|
||||
embeddings = position + words + token_types
|
||||
return self.norm(embeddings)
|
||||
|
||||
|
||||
class Bert(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
self.embeddings = BertEmbeddings(config)
|
||||
self.encoder = TransformerEncoder(
|
||||
num_layers=config.num_hidden_layers,
|
||||
dims=config.intermediate_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
)
|
||||
self.pooler = nn.Linear(config.intermediate_size, config.vocab_size)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
input_ids: mx.array,
|
||||
token_type_ids: mx.array,
|
||||
attention_mask: mx.array | None = None,
|
||||
) -> tuple[mx.array, mx.array]:
|
||||
x = self.embeddings(input_ids, token_type_ids)
|
||||
y = self.encoder(x, attention_mask)
|
||||
return y, mx.tanh(self.pooler(y[:, 0]))
|
||||
|
||||
|
||||
def run(bert_model: str, mlx_model: str):
|
||||
batch = [
|
||||
"This is an example of BERT working on MLX.",
|
||||
"A second string",
|
||||
"This is another string.",
|
||||
]
|
||||
|
||||
model = Bert(model_configs[bert_model])
|
||||
|
||||
weights = mx.load(mlx_model)
|
||||
weights = tree_unflatten(list(weights.items()))
|
||||
weights = tree_map(lambda p: mx.array(p), weights)
|
||||
|
||||
model.update(weights)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_model)
|
||||
|
||||
tokens = tokenizer(batch, return_tensors="np", padding=True)
|
||||
tokens = {key: mx.array(v) for key, v in tokens.items()}
|
||||
|
||||
mlx_output, mlx_pooled = model(**tokens)
|
||||
mlx_output = numpy.array(mlx_output)
|
||||
mlx_pooled = numpy.array(mlx_pooled)
|
||||
|
||||
print("MLX BERT:")
|
||||
print(mlx_output)
|
||||
|
||||
print("\n\nMLX Pooled:")
|
||||
print(mlx_pooled[0, :20])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Convert BERT weights to MLX.")
|
||||
parser.add_argument(
|
||||
"--bert-model",
|
||||
type=str,
|
||||
default="bert-base-uncased",
|
||||
help="The huggingface name of the BERT model to save.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mlx-model",
|
||||
type=str,
|
||||
default="weights/bert-base-uncased.npz",
|
||||
help="The output path for the MLX BERT weights.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
run(args.bert_model, args.mlx_model)
|
1
bert/weights/.gitignore
vendored
Normal file
1
bert/weights/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
*.npz
|
Loading…
Reference in New Issue
Block a user