diff --git a/llms/mlx_lm/models/internlm3.py b/llms/mlx_lm/models/internlm3.py new file mode 100644 index 00000000..3be6f536 --- /dev/null +++ b/llms/mlx_lm/models/internlm3.py @@ -0,0 +1,241 @@ +# Copyright © 2023-2024 Apple Inc. + +from dataclasses import dataclass +from typing import Any, Dict, Optional, Tuple, Union + +import mlx.core as mx +import mlx.nn as nn + +from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention + + +@dataclass +class ModelArgs(BaseModelArgs): + model_type: str + hidden_size: int + num_hidden_layers: int + intermediate_size: int + num_attention_heads: int + rms_norm_eps: float + vocab_size: int + bias: bool = False + qkv_bias: bool = False + max_position_embeddings: int = 32768 + num_key_value_heads: int = None + rope_theta: float = 10000 + rope_traditional: bool = False + rope_scaling: Optional[Dict[str, Union[float, str]]] = None + tie_word_embeddings: bool = False + + def __post_init__(self): + if self.num_key_value_heads is None: + self.num_key_value_heads = self.num_attention_heads + + if self.rope_scaling: + required_keys = {"factor", "rope_type"} + if not all(key in self.rope_scaling for key in required_keys): + raise ValueError(f"rope_scaling must contain keys {required_keys}") + + if self.rope_scaling["rope_type"] not in ["linear", "dynamic"]: + raise ValueError( + "rope_scaling 'rope_type' currently only supports 'linear' or 'dynamic" + ) + + +class DynamicNTKScalingRoPE(nn.Module): + """Implements the rotary positional encoding with Dynamic NTK scaling.""" + + def __init__( + self, + dims: int, + max_position_embeddings: int = 2048, + traditional: bool = False, + base: float = 10000, + scale: float = 1.0, + ): + super().__init__() + self.max_position_embeddings = max_position_embeddings + self.original_base = base + self.dims = dims + self.traditional = traditional + self.scale = scale + + def extra_repr(self): + return f"{self.dims}, traditional={self.traditional}, max_position_embeddings={self.max_position_embeddings}, scaling_factor={self.scaling_factor}" + + def __call__(self, x, offset: int = 0): + seq_len = x.shape[1] + offset + if seq_len > self.max_position_embeddings: + base = self.original_base * ( + (self.scale * seq_len / self.max_position_embeddings) - (self.scale - 1) + ) ** (self.dims / (self.dims - 2)) + else: + base = self.original_base + + return mx.fast.rope( + x, + self.dims, + traditional=self.traditional, + base=base, + scale=self.scale, + offset=offset, + ) + + +class Attention(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + + dim = args.hidden_size + qkv_bias = args.qkv_bias + self.n_heads = n_heads = args.num_attention_heads + self.n_kv_heads = n_kv_heads = args.num_key_value_heads + self.n_kv_groups = n_heads // args.num_key_value_heads + + self.head_dim = head_dim = args.hidden_size // n_heads + self.scale = head_dim**-0.5 + + self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=qkv_bias) + self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=qkv_bias) + self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=qkv_bias) + self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=qkv_bias) + + rope_scale = ( + 1 / args.rope_scaling["factor"] + if args.rope_scaling is not None + and args.rope_scaling["rope_type"] == "linear" + else 2.0 + ) + + self.rope = DynamicNTKScalingRoPE( + head_dim, + max_position_embeddings=args.max_position_embeddings, + traditional=args.rope_traditional, + base=args.rope_theta, + scale=rope_scale, + ) + + def __call__( + self, + x: mx.array, + mask: Optional[mx.array] = None, + cache: Optional[Any] = None, + ) -> mx.array: + B, L, D = x.shape + + queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) + + # Prepare the queries, keys and values for the attention computation + queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) + keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) + values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) + + if cache is not None: + queries = self.rope(queries, offset=cache.offset) + keys = self.rope(keys, offset=cache.offset) + keys, values = cache.update_and_fetch(keys, values) + else: + queries = self.rope(queries) + keys = self.rope(keys) + + output = scaled_dot_product_attention( + queries, keys, values, cache=cache, scale=self.scale, mask=mask + ) + + output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) + return self.o_proj(output) + + +class MLP(nn.Module): + def __init__(self, dim, hidden_dim, bias): + super().__init__() + self.gate_proj = nn.Linear(dim, hidden_dim, bias=bias) + self.down_proj = nn.Linear(hidden_dim, dim, bias=bias) + self.up_proj = nn.Linear(dim, hidden_dim, bias=bias) + + def __call__(self, x) -> mx.array: + return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) + + +class TransformerBlock(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.self_attn = Attention(args) + self.mlp = MLP(args.hidden_size, args.intermediate_size, args.bias) + self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) + self.post_attention_layernorm = nn.RMSNorm( + args.hidden_size, eps=args.rms_norm_eps + ) + + def __call__( + self, + x: mx.array, + mask: Optional[mx.array] = None, + cache: Optional[Any] = None, + ) -> mx.array: + r = self.self_attn(self.input_layernorm(x), mask, cache) + h = x + r + r = self.mlp(self.post_attention_layernorm(h)) + out = h + r + return out + + +class InternLM2Model(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + assert args.vocab_size > 0 + self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) + self.layers = [ + TransformerBlock(args=args) for _ in range(args.num_hidden_layers) + ] + self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) + + def __call__( + self, + inputs: mx.array, + mask: mx.array = None, + cache=None, + ): + h = self.embed_tokens(inputs) + + if mask is None: + mask = create_attention_mask(h, cache) + + if cache is None: + cache = [None] * len(self.layers) + + for layer, c in zip(self.layers, cache): + h = layer(h, mask, cache=c) + + return self.norm(h) + + +class Model(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.args = args + self.model_type = args.model_type + self.model = InternLM2Model(args) + if not args.tie_word_embeddings: + self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) + + def __call__( + self, + inputs: mx.array, + mask: mx.array = None, + cache=None, + ): + out = self.model(inputs, mask, cache) + if self.args.tie_word_embeddings: + out = self.model.embed_tokens.as_linear(out) + else: + out = self.lm_head(out) + return out + + def sanitize(self, weights): + # Remove unused precomputed rotary freqs + return {k: v for k, v in weights.items() if "attention.rope.inv_freq" not in k} + + @property + def layers(self): + return self.model.layers diff --git a/llms/mlx_lm/tuner/utils.py b/llms/mlx_lm/tuner/utils.py index 3986952a..594f8040 100644 --- a/llms/mlx_lm/tuner/utils.py +++ b/llms/mlx_lm/tuner/utils.py @@ -100,6 +100,7 @@ def linear_to_lora_layers( "minicpm", "deepseek", "olmo2", + "internlm3", ]: keys = set(["self_attn.q_proj", "self_attn.v_proj"]) if model.model_type in ["mixtral", "phimoe"]: diff --git a/llms/tests/test_models.py b/llms/tests/test_models.py index 118ec6f2..d8cf6820 100644 --- a/llms/tests/test_models.py +++ b/llms/tests/test_models.py @@ -927,6 +927,23 @@ class TestModels(unittest.TestCase): model, args.model_type, args.vocab_size, args.num_hidden_layers ) + def test_internlm3(self): + from mlx_lm.models import internlm3 + + args = internlm3.ModelArgs( + model_type="internlm3", + hidden_size=1024, + num_hidden_layers=4, + intermediate_size=2048, + num_attention_heads=4, + rms_norm_eps=1e-5, + vocab_size=10_000, + ) + model = internlm3.Model(args) + self.model_test_runner( + model, args.model_type, args.vocab_size, args.num_hidden_layers + ) + if __name__ == "__main__": unittest.main()