diff --git a/llms/mlx_lm/models/gemma2.py b/llms/mlx_lm/models/gemma2.py new file mode 100644 index 00000000..bd531c5d --- /dev/null +++ b/llms/mlx_lm/models/gemma2.py @@ -0,0 +1,190 @@ +from dataclasses import dataclass +from typing import Optional, Tuple + +import mlx.core as mx +import mlx.nn as nn + +from .base import BaseModelArgs + + +@dataclass +class ModelArgs(BaseModelArgs): + model_type: str + hidden_size: int + num_hidden_layers: int + intermediate_size: int + num_attention_heads: int + head_dim: int + rms_norm_eps: float + vocab_size: int + num_key_value_heads: int + rope_theta: float = 10000 + rope_traditional: bool = False + + +class RMSNorm(nn.Module): + def __init__(self, dims: int, eps: float = 1e-5): + super().__init__() + self.weight = mx.ones((dims,)) + self.eps = eps + + def __call__(self, x): + return mx.fast.rms_norm(x, 1.0 + self.weight, self.eps) + + +class Attention(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + + dim = args.hidden_size + self.n_heads = n_heads = args.num_attention_heads + self.n_kv_heads = n_kv_heads = args.num_key_value_heads + self.head_dim = head_dim = args.head_dim + + self.scale = head_dim**-0.5 + + self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False) + self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False) + self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False) + self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False) + + self.rope = nn.RoPE( + head_dim, + traditional=args.rope_traditional, + base=args.rope_theta, + ) + + def __call__( + self, + x: mx.array, + mask: Optional[mx.array] = None, + cache: Optional[Tuple[mx.array, mx.array]] = None, + ) -> mx.array: + B, L, D = x.shape + + queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) + + # Prepare the queries, keys and values for the attention computation + queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) + keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) + values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) + + if cache is not None: + queries = self.rope(queries, offset=cache.offset) + keys = self.rope(keys, offset=cache.offset) + keys, values = cache.update_and_fetch(keys, values) + else: + queries = self.rope(queries) + keys = self.rope(keys) + + output = mx.fast.scaled_dot_product_attention( + queries, keys, values, scale=self.scale, mask=mask + ) + + output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) + return self.o_proj(output) + + +class MLP(nn.Module): + def __init__(self, dim, hidden_dim): + super().__init__() + self.gate_proj = nn.Linear(dim, hidden_dim, bias=False) + self.down_proj = nn.Linear(hidden_dim, dim, bias=False) + self.up_proj = nn.Linear(dim, hidden_dim, bias=False) + + def __call__(self, x) -> mx.array: + return self.down_proj(nn.gelu(self.gate_proj(x)) * self.up_proj(x)) + + +class TransformerBlock(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.num_attention_heads = args.num_attention_heads + self.hidden_size = args.hidden_size + self.self_attn = Attention(args) + self.mlp = MLP(args.hidden_size, args.intermediate_size) + self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps) + self.pre_feedforward_layernorm = RMSNorm( + args.hidden_size, eps=args.rms_norm_eps + ) + self.post_feedforward_layernorm = RMSNorm( + args.hidden_size, eps=args.rms_norm_eps + ) + self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps) + self.args = args + + def __call__( + self, + x: mx.array, + mask: Optional[mx.array] = None, + cache: Optional[Tuple[mx.array, mx.array]] = None, + ) -> mx.array: + r = self.self_attn(self.input_layernorm(x), mask, cache) + h = x + self.post_attention_layernorm(r) + r = self.mlp(self.pre_feedforward_layernorm(h)) + out = h + self.post_feedforward_layernorm(r) + return out + + +class GemmaModel(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.args = args + self.vocab_size = args.vocab_size + self.num_hidden_layers = args.num_hidden_layers + assert self.vocab_size > 0 + self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) + self.layers = [ + TransformerBlock(args=args) for _ in range(args.num_hidden_layers) + ] + self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps) + + def __call__( + self, + inputs: mx.array, + cache=None, + ): + h = self.embed_tokens(inputs) + h = h * (self.args.hidden_size**0.5) + + mask = None + if h.shape[1] > 1: + mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) + mask = mask.astype(h.dtype) + + if cache is None: + cache = [None] * len(self.layers) + + for layer, c in zip(self.layers, cache): + h = layer(h, mask, c) + + return self.norm(h) + + +class Model(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.model_type = args.model_type + self.model = GemmaModel(args) + self.args = args + + def __call__( + self, + inputs: mx.array, + cache=None, + ): + out = self.model(inputs, cache) + out = self.model.embed_tokens.as_linear(out) + return out + + @property + def layers(self): + return self.model.layers + + @property + def head_dim(self): + return self.args.head_dim + + @property + def n_kv_heads(self): + return self.args.num_key_value_heads diff --git a/llms/mlx_lm/tuner/utils.py b/llms/mlx_lm/tuner/utils.py index 2614c7a5..fe9740f5 100644 --- a/llms/mlx_lm/tuner/utils.py +++ b/llms/mlx_lm/tuner/utils.py @@ -95,6 +95,7 @@ def linear_to_lora_layers( "qwen2", "qwen2_moe", "gemma", + "gemma2", "starcoder2", "cohere", "minicpm",