cleaning up

This commit is contained in:
Goekdeniz-Guelmez 2025-01-31 21:36:24 +01:00
parent ceccb4c9e9
commit 541677aa7f
2 changed files with 34 additions and 19 deletions

View File

@ -66,7 +66,6 @@ CONFIG_DEFAULTS = {
"lora_parameters": {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0},
"beta": 0.1,
"dpo_loss_type": "sigmoid",
"is_reference_free": False,
"delta": 50.0,
"reference_model_path": None,
"reward_scaling": 1.0,
@ -174,13 +173,21 @@ def build_parser():
help="Use gradient checkpointing to reduce memory use.",
default=None,
)
parser.add_argument("--beta", type=float)
parser.add_argument("--dpo-loss-type", type=str, choices=["sigmoid", "hinge", "ipo", "dpo"])
parser.add_argument("--is-reference-free", action="store_true")
parser.add_argument("--delta", type=float)
parser.add_argument("--reference-model-path", type=str)
parser.add_argument("--reward-scaling", type=float, help="Scaling factor for offline rewards.")
parser.add_argument("--seed", type=int, help="The PRNG seed.")
# ORPO args
parser.add_argument(
"--beta",
type=float,
help="Temperature parameter for ORPO training.",
default=0.1
)
parser.add_argument(
"--reward-scaling",
type=float,
help="Reward scaling factor for ORPO training, not implemented.",
default=1.0
)
return parser
@ -239,7 +246,8 @@ def train_model(
adapter_file=adapter_file,
max_seq_length=args.max_seq_length,
grad_checkpoint=args.grad_checkpoint,
beta=args.beta
beta=args.beta,
reward_scaling=args.reward_scaling
)
train_orpo(
@ -288,7 +296,7 @@ def evaluate_model(args, model: nn.Module, tokenizer: TokenizerWrapper, test_set
max_seq_length=args.max_seq_length,
beta=args.beta
)
print(f"Test loss {test_loss:.8f}, Rewards: {test_rewards[0]:.3f}, {test_rewards[1]:.3f}")
print(f"Test loss {test_loss:.3f}, Rewards: {test_rewards[0]:.3f}, {test_rewards[1]:.3f}")
else:
test_loss = evaluate(
model=model,
@ -351,4 +359,4 @@ def main():
if __name__ == "__main__":
main()
main()

View File

@ -16,6 +16,10 @@ class ORPOTrainingArgs(TrainingArgs):
default=0.1,
metadata={"help": "Temperature parameter for ORPO training."}
)
reward_scaling: float = field(
default=1.0,
metadata={"help": "Reward scaling factor for ORPO training, not implemented."}
)
def orpo_loss(model, chosen, rejected, chosen_masks, rejected_masks, preference_scores, beta=0.1):
@ -131,7 +135,7 @@ def evaluate_orpo(model, dataset, batch_size, num_batches, beta: float, max_seq_
),
):
chosen, rejected, chosen_masks, rejected_masks, preference_scores = batch
loss, reward, toks, metrics = orpo_loss(
lvalue, reward, toks, metrics = orpo_loss(
model=model,
chosen=chosen,
rejected=rejected,
@ -140,7 +144,7 @@ def evaluate_orpo(model, dataset, batch_size, num_batches, beta: float, max_seq_
preference_scores=preference_scores,
beta=beta
)
all_losses += loss * toks
all_losses += lvalue * toks
all_rewards += reward * toks
ntokens += toks
@ -169,6 +173,7 @@ def train_orpo(
optimizer,
train_dataset,
val_dataset,
loss: callable = orpo_loss,
args: ORPOTrainingArgs = ORPOTrainingArgs(),
training_callback: TrainingCallback = None,
):
@ -188,7 +193,7 @@ def train_orpo(
def step(batch):
chosen, rejected, chosen_masks, rejected_masks, preference_scores = batch
(loss, reward, toks, metrics), grad = loss_value_and_grad(
(lvalue, reward, toks, metrics), grad = loss_value_and_grad(
model,
chosen,
rejected,
@ -200,10 +205,10 @@ def train_orpo(
grad = average_gradients(grad)
optimizer.update(model, grad)
return loss, reward, toks, metrics
return lvalue, reward, toks, metrics
def loss_wrapper(model, chosen, rejected, chosen_masks, rejected_masks, preference_scores):
return orpo_loss(
return loss(
model=model,
chosen=chosen,
rejected=rejected,
@ -254,7 +259,7 @@ def train_orpo(
if rank == 0:
print(
f"Iter {it}: "
f"Val loss {val_loss:.8f}, "
f"Val loss {val_loss:.3f}, "
f"Val chosen reward {val_rewards[0]:.3f}, "
f"Val rejected reward {val_rewards[1]:.3f}, "
f"Val accuracy {val_metrics['accuracies']:.3f}, "
@ -276,13 +281,15 @@ def train_orpo(
start = time.perf_counter()
# Training step
loss, reward, toks, metrics = step(batch)
losses += loss
lvalue, reward, toks, metrics = step(batch)
losses += lvalue
rewards += reward
n_tokens += toks
steps += 1
for k, v in metrics.items():
accumulated_metrics[k] += v
mx.eval(state, losses, rewards, n_tokens)
if it % args.steps_per_report == 0 or it == args.iters:
@ -300,7 +307,7 @@ def train_orpo(
if rank == 0:
print(
f"Iter {it}: Train loss {train_loss:.8f}, "
f"Iter {it}: Train loss {train_loss:.3f}, "
f"Chosen reward {train_rewards[0]:.3f}, "
f"Rejected reward {train_rewards[1]:.3f}, "
f"Accuracy {avg_metrics['accuracies']:.3f}, "