diff --git a/ACKNOWLEDGMENTS.md b/ACKNOWLEDGMENTS.md index 851c995c..c6853710 100644 --- a/ACKNOWLEDGMENTS.md +++ b/ACKNOWLEDGMENTS.md @@ -14,4 +14,4 @@ MLX Examples was developed with contributions from the following individuals: - Markus Enzweiler: Added the `cvae` examples. - Prince Canuma: Helped add support for `Starcoder2` models. - Shiyu Li: Added the `Segment Anything Model`. -- Gökdeniz Gülmez: Added support for `MiniCPM`, `Helium`, `Mamba version 1` and support for `full-fine-tuning`. \ No newline at end of file +- Gökdeniz Gülmez: Added support for `MiniCPM`, `Helium`, `Mamba version 1`, `OLMoE` archtectures and support for `full-fine-tuning`. \ No newline at end of file diff --git a/llms/mlx_lm/models/olmoe.py b/llms/mlx_lm/models/olmoe.py new file mode 100644 index 00000000..b9c0fc69 --- /dev/null +++ b/llms/mlx_lm/models/olmoe.py @@ -0,0 +1,217 @@ +# Copyright © 2023-2024 Apple Inc. + +from dataclasses import dataclass +from typing import Any, Dict, Optional, Union + +import mlx.core as mx +import mlx.nn as nn + +from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention +from .rope_utils import initialize_rope +from .switch_layers import SwitchGLU + + +@dataclass +class ModelArgs(BaseModelArgs): + model_type: str + hidden_size: int + num_hidden_layers: int + intermediate_size: int + num_attention_heads: int + rms_norm_eps: float + vocab_size: int + num_experts: int + num_experts_per_tok: int + norm_topk_prob: bool = False + head_dim: Optional[int] = None + max_position_embeddings: Optional[int] = None + num_key_value_heads: Optional[int] = None + attention_bias: bool = False + mlp_bias: bool = False + rope_theta: float = 10000 + rope_traditional: bool = False + rope_scaling: Optional[Dict[str, Union[float, str]]] = None + tie_word_embeddings: bool = True + + def __post_init__(self): + if self.num_key_value_heads is None: + self.num_key_value_heads = self.num_attention_heads + + +class Attention(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + + dim = args.hidden_size + self.n_heads = n_heads = args.num_attention_heads + self.n_kv_heads = n_kv_heads = args.num_key_value_heads + + self.head_dim = head_dim = args.head_dim or args.hidden_size // n_heads + + self.scale = head_dim**-0.5 + + self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias) + self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias) + self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias) + self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=args.attention_bias) + + self.rope = initialize_rope( + self.head_dim, + args.rope_theta, + args.rope_traditional, + args.rope_scaling, + args.max_position_embeddings, + ) + + self.q_norm = nn.RMSNorm(n_heads * head_dim, args.rms_norm_eps) + self.k_norm = nn.RMSNorm(n_kv_heads * head_dim, args.rms_norm_eps) + + def __call__( + self, + x: mx.array, + mask: Optional[mx.array] = None, + cache: Optional[Any] = None, + ) -> mx.array: + B, L, D = x.shape + queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) + queries = self.q_norm(queries) + keys = self.k_norm(keys) + queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) + keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) + values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) + if cache is not None: + queries = self.rope(queries, offset=cache.offset) + keys = self.rope(keys, offset=cache.offset) + keys, values = cache.update_and_fetch(keys, values) + else: + queries = self.rope(queries) + keys = self.rope(keys) + output = scaled_dot_product_attention( + queries, keys, values, cache=cache, scale=self.scale, mask=mask + ) + output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) + return self.o_proj(output) + + +class OlmoeSparseMoeBlock(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.num_experts = args.num_experts + self.top_k = args.num_experts_per_tok + self.norm_topk_prob = args.norm_topk_prob + + self.gate = nn.Linear(args.hidden_size, self.num_experts, bias=False) + self.switch_mlp = SwitchGLU( + args.hidden_size, + args.intermediate_size, + self.num_experts, + bias=args.mlp_bias, + ) + + def __call__(self, x: mx.array) -> mx.array: + B, L, D = x.shape + x_flat = x.reshape(-1, D) + router_logits = self.gate(x_flat) + routing_weights = mx.softmax(router_logits, axis=1, precise=True) + k = self.top_k + indices = mx.stop_gradient( + mx.argpartition(-routing_weights, kth=k - 1, axis=-1)[..., :k] + ) + scores = mx.take_along_axis(routing_weights, indices, axis=-1) + if self.norm_topk_prob: + scores = scores / scores.sum(axis=-1, keepdims=True) + y = self.switch_mlp(x_flat, indices) + y = (y * scores[..., None]).sum(axis=-2) + return y.reshape(B, L, D) + + +class TransformerBlock(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.self_attn = Attention(args) + self.mlp = OlmoeSparseMoeBlock(args) + self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) + self.post_attention_layernorm = nn.RMSNorm( + args.hidden_size, eps=args.rms_norm_eps + ) + + def __call__( + self, + x: mx.array, + mask: Optional[mx.array] = None, + cache: Optional[Any] = None, + ) -> mx.array: + x = x + self.self_attn(self.input_layernorm(x), mask, cache) + x = x + self.mlp(self.post_attention_layernorm(x)) + return x + + +class OlmoeModel(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.args = args + self.vocab_size = args.vocab_size + self.num_hidden_layers = args.num_hidden_layers + assert self.vocab_size > 0 + self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) + self.layers = [ + TransformerBlock(args=args) for _ in range(args.num_hidden_layers) + ] + self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) + + def __call__( + self, + inputs: mx.array, + cache=None, + mask=None, + ): + h = self.embed_tokens(inputs) + if mask is None: + mask = create_attention_mask(h, cache) + if cache is None: + cache = [None] * len(self.layers) + for layer, c in zip(self.layers, cache): + h = layer(h, mask, cache=c) + return self.norm(h) + + +class Model(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.args = args + self.model_type = args.model_type + self.model = OlmoeModel(args) + if not args.tie_word_embeddings: + self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) + + def __call__( + self, + inputs: mx.array, + cache=None, + mask=None, + ): + out = self.model(inputs, cache, mask) + if self.args.tie_word_embeddings: + out = self.model.embed_tokens.as_linear(out) + else: + out = self.lm_head(out) + return out + + def sanitize(self, weights): + if "model.layers.0.mlp.experts.0.up_proj.weight" not in weights: + return weights + for l in range(self.args.num_hidden_layers): + prefix = f"model.layers.{l}" + for n in ["up_proj", "down_proj", "gate_proj"]: + for k in ["weight", "scales", "biases"]: + if f"{prefix}.mlp.experts.0.{n}.{k}" in weights: + to_join = [ + weights.pop(f"{prefix}.mlp.experts.{e}.{n}.{k}") + for e in range(self.args.num_experts) + ] + weights[f"{prefix}.mlp.switch_mlp.{n}.{k}"] = mx.stack(to_join) + return weights + + @property + def layers(self): + return self.model.layers diff --git a/llms/mlx_lm/tuner/utils.py b/llms/mlx_lm/tuner/utils.py index f5df11e3..cc7c6c20 100644 --- a/llms/mlx_lm/tuner/utils.py +++ b/llms/mlx_lm/tuner/utils.py @@ -98,6 +98,7 @@ def linear_to_lora_layers( "minicpm", "deepseek", "olmo2", + "olmoe", "internlm3", ]: keys = set(["self_attn.q_proj", "self_attn.v_proj"]) @@ -106,6 +107,8 @@ def linear_to_lora_layers( if model.model_type == "qwen2_moe": keys.add("mlp.gate") keys.add("mlp.shared_expert_gate") + if model.model_type == "olmoe": + keys.add("mlp.gate") elif model.model_type == "gpt_bigcode": keys = set(["attn.c_attn"])