adding OLMoE architecture (#1321)

* initial commit

* udpate ACKNOWLEDGMENTS.md

* adding olmoe to training

* clean up

* faster generation

* remove sanitize method

* more clean ups

* adding SwitchGLU

* clean up

* a little faster and adding norm_topk_prob

* formated
This commit is contained in:
Gökdeniz Gülmez 2025-03-05 22:46:06 +01:00 committed by GitHub
parent e7267d30f8
commit 56d2db23e1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 221 additions and 1 deletions

View File

@ -14,4 +14,4 @@ MLX Examples was developed with contributions from the following individuals:
- Markus Enzweiler: Added the `cvae` examples. - Markus Enzweiler: Added the `cvae` examples.
- Prince Canuma: Helped add support for `Starcoder2` models. - Prince Canuma: Helped add support for `Starcoder2` models.
- Shiyu Li: Added the `Segment Anything Model`. - Shiyu Li: Added the `Segment Anything Model`.
- Gökdeniz Gülmez: Added support for `MiniCPM`, `Helium`, `Mamba version 1` and support for `full-fine-tuning`. - Gökdeniz Gülmez: Added support for `MiniCPM`, `Helium`, `Mamba version 1`, `OLMoE` archtectures and support for `full-fine-tuning`.

217
llms/mlx_lm/models/olmoe.py Normal file
View File

@ -0,0 +1,217 @@
# Copyright © 2023-2024 Apple Inc.
from dataclasses import dataclass
from typing import Any, Dict, Optional, Union
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
from .rope_utils import initialize_rope
from .switch_layers import SwitchGLU
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
hidden_size: int
num_hidden_layers: int
intermediate_size: int
num_attention_heads: int
rms_norm_eps: float
vocab_size: int
num_experts: int
num_experts_per_tok: int
norm_topk_prob: bool = False
head_dim: Optional[int] = None
max_position_embeddings: Optional[int] = None
num_key_value_heads: Optional[int] = None
attention_bias: bool = False
mlp_bias: bool = False
rope_theta: float = 10000
rope_traditional: bool = False
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
tie_word_embeddings: bool = True
def __post_init__(self):
if self.num_key_value_heads is None:
self.num_key_value_heads = self.num_attention_heads
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
self.head_dim = head_dim = args.head_dim or args.hidden_size // n_heads
self.scale = head_dim**-0.5
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=args.attention_bias)
self.rope = initialize_rope(
self.head_dim,
args.rope_theta,
args.rope_traditional,
args.rope_scaling,
args.max_position_embeddings,
)
self.q_norm = nn.RMSNorm(n_heads * head_dim, args.rms_norm_eps)
self.k_norm = nn.RMSNorm(n_kv_heads * head_dim, args.rms_norm_eps)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
queries = self.q_norm(queries)
keys = self.k_norm(keys)
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = scaled_dot_product_attention(
queries, keys, values, cache=cache, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
class OlmoeSparseMoeBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.num_experts = args.num_experts
self.top_k = args.num_experts_per_tok
self.norm_topk_prob = args.norm_topk_prob
self.gate = nn.Linear(args.hidden_size, self.num_experts, bias=False)
self.switch_mlp = SwitchGLU(
args.hidden_size,
args.intermediate_size,
self.num_experts,
bias=args.mlp_bias,
)
def __call__(self, x: mx.array) -> mx.array:
B, L, D = x.shape
x_flat = x.reshape(-1, D)
router_logits = self.gate(x_flat)
routing_weights = mx.softmax(router_logits, axis=1, precise=True)
k = self.top_k
indices = mx.stop_gradient(
mx.argpartition(-routing_weights, kth=k - 1, axis=-1)[..., :k]
)
scores = mx.take_along_axis(routing_weights, indices, axis=-1)
if self.norm_topk_prob:
scores = scores / scores.sum(axis=-1, keepdims=True)
y = self.switch_mlp(x_flat, indices)
y = (y * scores[..., None]).sum(axis=-2)
return y.reshape(B, L, D)
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.self_attn = Attention(args)
self.mlp = OlmoeSparseMoeBlock(args)
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.post_attention_layernorm = nn.RMSNorm(
args.hidden_size, eps=args.rms_norm_eps
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
x = x + self.self_attn(self.input_layernorm(x), mask, cache)
x = x + self.mlp(self.post_attention_layernorm(x))
return x
class OlmoeModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.num_hidden_layers = args.num_hidden_layers
assert self.vocab_size > 0
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
]
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
inputs: mx.array,
cache=None,
mask=None,
):
h = self.embed_tokens(inputs)
if mask is None:
mask = create_attention_mask(h, cache)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, mask, cache=c)
return self.norm(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.model = OlmoeModel(args)
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
mask=None,
):
out = self.model(inputs, cache, mask)
if self.args.tie_word_embeddings:
out = self.model.embed_tokens.as_linear(out)
else:
out = self.lm_head(out)
return out
def sanitize(self, weights):
if "model.layers.0.mlp.experts.0.up_proj.weight" not in weights:
return weights
for l in range(self.args.num_hidden_layers):
prefix = f"model.layers.{l}"
for n in ["up_proj", "down_proj", "gate_proj"]:
for k in ["weight", "scales", "biases"]:
if f"{prefix}.mlp.experts.0.{n}.{k}" in weights:
to_join = [
weights.pop(f"{prefix}.mlp.experts.{e}.{n}.{k}")
for e in range(self.args.num_experts)
]
weights[f"{prefix}.mlp.switch_mlp.{n}.{k}"] = mx.stack(to_join)
return weights
@property
def layers(self):
return self.model.layers

View File

@ -98,6 +98,7 @@ def linear_to_lora_layers(
"minicpm", "minicpm",
"deepseek", "deepseek",
"olmo2", "olmo2",
"olmoe",
"internlm3", "internlm3",
]: ]:
keys = set(["self_attn.q_proj", "self_attn.v_proj"]) keys = set(["self_attn.q_proj", "self_attn.v_proj"])
@ -106,6 +107,8 @@ def linear_to_lora_layers(
if model.model_type == "qwen2_moe": if model.model_type == "qwen2_moe":
keys.add("mlp.gate") keys.add("mlp.gate")
keys.add("mlp.shared_expert_gate") keys.add("mlp.shared_expert_gate")
if model.model_type == "olmoe":
keys.add("mlp.gate")
elif model.model_type == "gpt_bigcode": elif model.model_type == "gpt_bigcode":
keys = set(["attn.c_attn"]) keys = set(["attn.c_attn"])