mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-27 19:31:20 +08:00
better dataset handling
This commit is contained in:
parent
de147187c1
commit
5704136791
@ -6,10 +6,19 @@ from typing import Any, Dict, List, Optional, Union
|
|||||||
|
|
||||||
from transformers import PreTrainedTokenizer
|
from transformers import PreTrainedTokenizer
|
||||||
|
|
||||||
|
from typing import List, Dict, Union
|
||||||
|
from transformers import PreTrainedTokenizer
|
||||||
|
|
||||||
|
from typing import List, Dict, Union
|
||||||
|
from transformers import PreTrainedTokenizer
|
||||||
|
|
||||||
|
from typing import List, Dict, Union
|
||||||
|
from transformers import PreTrainedTokenizer
|
||||||
|
|
||||||
class ORPODataset:
|
class ORPODataset:
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
data: List[Dict[str, Union[str, Dict]]],
|
data: List[Dict[str, Union[str, Dict, List]]],
|
||||||
tokenizer: PreTrainedTokenizer,
|
tokenizer: PreTrainedTokenizer,
|
||||||
prompt_key: str = "prompt",
|
prompt_key: str = "prompt",
|
||||||
chosen_key: str = "chosen",
|
chosen_key: str = "chosen",
|
||||||
@ -22,28 +31,51 @@ class ORPODataset:
|
|||||||
self._scores = []
|
self._scores = []
|
||||||
|
|
||||||
for d in data:
|
for d in data:
|
||||||
|
# Get prompt content, preferring 'prompt' over 'question'
|
||||||
|
prompt_content = d.get(prompt_key, d.get("question", ""))
|
||||||
|
|
||||||
if system_key and system_key in d:
|
if system_key and system_key in d:
|
||||||
base_messages = [{"role": "system", "content": d[system_key]}]
|
base_messages = [{"role": "system", "content": d[system_key]}]
|
||||||
chosen_messages = base_messages + [{"role": "user", "content": d[prompt_key]}]
|
chosen_messages = base_messages + [{"role": "user", "content": prompt_content}]
|
||||||
|
rejected_messages = base_messages + [{"role": "user", "content": prompt_content}]
|
||||||
|
|
||||||
|
# Handle chosen messages
|
||||||
if isinstance(d[chosen_key], str):
|
if isinstance(d[chosen_key], str):
|
||||||
chosen_messages.append({"role": "assistant", "content": d[chosen_key]})
|
chosen_messages.append({"role": "assistant", "content": d[chosen_key]})
|
||||||
else:
|
elif isinstance(d[chosen_key], dict):
|
||||||
chosen_messages.extend(d[chosen_key]["messages"])
|
if "messages" in d[chosen_key]:
|
||||||
rejected_messages = base_messages + [{"role": "user", "content": d[prompt_key]}]
|
chosen_messages.extend(d[chosen_key]["messages"])
|
||||||
|
else:
|
||||||
|
chosen_messages.append({"role": "assistant", "content": d[chosen_key].get("content", "")})
|
||||||
|
elif isinstance(d[chosen_key], list):
|
||||||
|
chosen_messages.extend(d[chosen_key])
|
||||||
|
|
||||||
|
# Handle rejected messages
|
||||||
if isinstance(d[rejected_key], str):
|
if isinstance(d[rejected_key], str):
|
||||||
rejected_messages.append({"role": "assistant", "content": d[rejected_key]})
|
rejected_messages.append({"role": "assistant", "content": d[rejected_key]})
|
||||||
else:
|
elif isinstance(d[rejected_key], dict):
|
||||||
rejected_messages.extend(d[rejected_key]["messages"])
|
if "messages" in d[rejected_key]:
|
||||||
|
rejected_messages.extend(d[rejected_key]["messages"])
|
||||||
|
else:
|
||||||
|
rejected_messages.append({"role": "assistant", "content": d[rejected_key].get("content", "")})
|
||||||
|
elif isinstance(d[rejected_key], list):
|
||||||
|
rejected_messages.extend(d[rejected_key])
|
||||||
|
|
||||||
chosen_text = tokenizer.apply_chat_template(chosen_messages)
|
chosen_text = tokenizer.apply_chat_template(chosen_messages)
|
||||||
rejected_text = tokenizer.apply_chat_template(rejected_messages)
|
rejected_text = tokenizer.apply_chat_template(rejected_messages)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
|
# Handle non-system message cases
|
||||||
|
chosen_content = self._extract_content(d[chosen_key])
|
||||||
|
rejected_content = self._extract_content(d[rejected_key])
|
||||||
|
|
||||||
chosen_text = tokenizer.apply_chat_template([
|
chosen_text = tokenizer.apply_chat_template([
|
||||||
{"role": "user", "content": d[prompt_key]},
|
{"role": "user", "content": prompt_content},
|
||||||
{"role": "assistant", "content": d[chosen_key] if isinstance(d[chosen_key], str) else d[chosen_key]["messages"][-1]["content"]},
|
{"role": "assistant", "content": chosen_content},
|
||||||
])
|
])
|
||||||
rejected_text = tokenizer.apply_chat_template([
|
rejected_text = tokenizer.apply_chat_template([
|
||||||
{"role": "user", "content": d[prompt_key]},
|
{"role": "user", "content": prompt_content},
|
||||||
{"role": "assistant", "content": d[rejected_key] if isinstance(d[rejected_key], str) else d[rejected_key]["messages"][-1]["content"]},
|
{"role": "assistant", "content": rejected_content},
|
||||||
])
|
])
|
||||||
|
|
||||||
self._chosen_data.append(chosen_text)
|
self._chosen_data.append(chosen_text)
|
||||||
@ -54,6 +86,25 @@ class ORPODataset:
|
|||||||
else:
|
else:
|
||||||
self._scores.append(1.0)
|
self._scores.append(1.0)
|
||||||
|
|
||||||
|
def _extract_content(self, data):
|
||||||
|
"""Helper method to extract content from various data formats."""
|
||||||
|
if isinstance(data, str):
|
||||||
|
return data
|
||||||
|
elif isinstance(data, dict):
|
||||||
|
if "messages" in data:
|
||||||
|
last_message = data["messages"][-1]
|
||||||
|
return last_message.get("content", last_message.get("messages", ""))
|
||||||
|
return data.get("content", "")
|
||||||
|
elif isinstance(data, list):
|
||||||
|
last_message = data[-1]
|
||||||
|
if isinstance(last_message, dict):
|
||||||
|
if "content" in last_message:
|
||||||
|
return last_message["content"]
|
||||||
|
elif "messages" in last_message:
|
||||||
|
return last_message["messages"]
|
||||||
|
return last_message if isinstance(last_message, str) else ""
|
||||||
|
return ""
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self._chosen_data)
|
return len(self._chosen_data)
|
||||||
|
|
||||||
@ -213,7 +264,7 @@ def load_local_dataset(
|
|||||||
with open(path, "r") as fid:
|
with open(path, "r") as fid:
|
||||||
data = [json.loads(l) for l in fid]
|
data = [json.loads(l) for l in fid]
|
||||||
|
|
||||||
return create_dataset(data, tokenizer, config)
|
return create_dataset(args, data, tokenizer, config)
|
||||||
|
|
||||||
names = ("train", "valid", "test")
|
names = ("train", "valid", "test")
|
||||||
train, valid, test = [load_subset(data_path / f"{n}.jsonl") for n in names]
|
train, valid, test = [load_subset(data_path / f"{n}.jsonl") for n in names]
|
||||||
|
Loading…
Reference in New Issue
Block a user