mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-07-06 00:31:13 +08:00
updates
This commit is contained in:
parent
ffc7ab06a0
commit
58b448dc0b
@ -324,6 +324,7 @@ class RotatingKVCache(_BaseCache):
|
||||
class MambaCache(_BaseCache):
|
||||
def __init__(self):
|
||||
self.cache = [None, None]
|
||||
self.offset = 0
|
||||
|
||||
def __setitem__(self, idx, value):
|
||||
self.cache[idx] = value
|
||||
@ -341,129 +342,12 @@ class MambaCache(_BaseCache):
|
||||
|
||||
|
||||
class Mamba2Cache:
|
||||
batch_size: int
|
||||
intermediate_size: int
|
||||
state_size: int
|
||||
conv_kernel: int
|
||||
num_heads: int
|
||||
head_dim: int
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
batch_size: int,
|
||||
intermediate_size: int,
|
||||
state_size: int,
|
||||
conv_kernel: int,
|
||||
num_heads: int,
|
||||
head_dim: int
|
||||
):
|
||||
self.batch_size = batch_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.state_size = state_size
|
||||
self.conv_kernel = conv_kernel
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = head_dim
|
||||
|
||||
# Initialize conv state with proper dimensions
|
||||
self.conv_dim = self.intermediate_size + 2 * self.state_size
|
||||
self.conv_state = mx.zeros((batch_size, self.conv_dim, conv_kernel - 1))
|
||||
|
||||
# Initialize SSM state
|
||||
self.ssm_state = mx.zeros((
|
||||
batch_size,
|
||||
num_heads,
|
||||
head_dim,
|
||||
state_size
|
||||
))
|
||||
def __init__(self, batch_size, conv_dim, kernel_size, num_heads, head_dim, state_size):
|
||||
self.conv_states = mx.zeros((batch_size, conv_dim, kernel_size - 1))
|
||||
self.ssm_states = mx.zeros((batch_size, num_heads, head_dim, state_size))
|
||||
self.seqlen_offset = 0
|
||||
|
||||
def update_conv_state(self, x: mx.array) -> mx.array:
|
||||
"""
|
||||
Update convolution state for incremental inference.
|
||||
Args:
|
||||
x: Input tensor containing projected values (B, conv_in_dim)
|
||||
Returns:
|
||||
Combined state tensor of shape (batch_size, conv_dim, kernel_size)
|
||||
"""
|
||||
# Handle input shape
|
||||
if x.ndim == 1:
|
||||
x = mx.expand_dims(x, 0) # Add batch dimension if needed
|
||||
|
||||
# Ensure batch size matches
|
||||
assert x.shape[0] == self.batch_size, f"Batch size mismatch: {x.shape[0]} vs {self.batch_size}"
|
||||
|
||||
# Reshape x to match conv_dim
|
||||
# The input x contains intermediate_size + 2 * state_size dimensions
|
||||
x_reshaped = mx.reshape(x, (self.batch_size, -1))
|
||||
x_padded = mx.pad(
|
||||
x_reshaped,
|
||||
[(0, 0), (0, self.conv_dim - x_reshaped.shape[1])],
|
||||
mode='constant',
|
||||
constant_values=0
|
||||
)
|
||||
|
||||
# Expand dims for concatenation
|
||||
x_expanded = mx.expand_dims(x_padded, -1) # Shape: (batch_size, conv_dim, 1)
|
||||
|
||||
# Roll the existing state left by 1
|
||||
rolled_state = mx.roll(self.conv_state, shift=-1, axis=-1)
|
||||
|
||||
# Create update mask for the last position
|
||||
update_pos = self.conv_kernel - 2
|
||||
state_idx = mx.arange(self.conv_kernel - 1)
|
||||
update_mask = state_idx == update_pos
|
||||
|
||||
# Broadcast mask to match state dimensions
|
||||
update_mask = mx.broadcast_to(
|
||||
mx.reshape(update_mask, (1, 1, -1)),
|
||||
rolled_state.shape
|
||||
)
|
||||
|
||||
# Update state with padded input
|
||||
x_broadcast = mx.broadcast_to(x_expanded, (self.batch_size, self.conv_dim, 1))
|
||||
self.conv_state = mx.where(
|
||||
update_mask,
|
||||
x_broadcast,
|
||||
rolled_state
|
||||
)
|
||||
|
||||
# Return concatenated state for convolution
|
||||
return mx.concatenate([self.conv_state, x_expanded], axis=-1)
|
||||
|
||||
def update_ssm_state(self, dA: mx.array, dBx: mx.array) -> mx.array:
|
||||
"""
|
||||
Update SSM state for incremental inference.
|
||||
Args:
|
||||
dA: State transition tensor of shape (batch_size, num_heads)
|
||||
dBx: Input projection tensor of shape (batch_size, num_heads, head_dim, state_size)
|
||||
Returns:
|
||||
Updated SSM state of shape (batch_size, num_heads, head_dim, state_size)
|
||||
"""
|
||||
# Add necessary dimensions to dA for broadcasting
|
||||
# dA shape: (batch_size, num_heads) -> (batch_size, num_heads, 1, 1)
|
||||
dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
|
||||
|
||||
# Ensure dBx has the correct shape
|
||||
assert dBx.shape[-1] == self.state_size, f"dBx state dimension mismatch: {dBx.shape[-1]} vs {self.state_size}"
|
||||
assert dBx.shape[-2] == self.head_dim, f"dBx head dimension mismatch: {dBx.shape[-2]} vs {self.head_dim}"
|
||||
|
||||
# Update state: state = dA * state + dBx
|
||||
self.ssm_state = dA * self.ssm_state + dBx
|
||||
|
||||
return self.ssm_state
|
||||
|
||||
@classmethod
|
||||
def get_cache(
|
||||
cls,
|
||||
args,
|
||||
batch_size: int,
|
||||
max_seq_length: Optional[int]
|
||||
) -> "Mamba2Cache":
|
||||
"""Create a new cache instance with the given parameters."""
|
||||
return cls(
|
||||
batch_size=batch_size,
|
||||
intermediate_size=args.intermediate_size,
|
||||
state_size=args.state_size,
|
||||
conv_kernel=args.conv_kernel,
|
||||
num_heads=args.num_heads,
|
||||
head_dim=args.head_dim
|
||||
)
|
||||
def update(self, new_conv_state, new_ssm_state):
|
||||
self.conv_states = new_conv_state
|
||||
self.ssm_states = new_ssm_state
|
||||
self.seqlen_offset += 1
|
@ -1,275 +1,7 @@
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .cache import MambaCache
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
num_heads: int
|
||||
head_dim: int
|
||||
vocab_size: int
|
||||
hidden_size: int
|
||||
state_size: int
|
||||
num_hidden_layers: int
|
||||
layer_norm_epsilon: float
|
||||
expand: int
|
||||
conv_kernel: int
|
||||
n_groups: int
|
||||
use_bias: bool
|
||||
use_conv_bias: bool
|
||||
initializer_range: float
|
||||
residual_in_fp32: bool
|
||||
time_step_min: float
|
||||
time_step_max: float
|
||||
time_step_floor: float
|
||||
rescale_prenorm_residual: bool
|
||||
use_cache: bool
|
||||
rms_norm: bool
|
||||
chunk_size: int
|
||||
tie_word_embeddings: bool
|
||||
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
||||
time_step_rank: Union[int, str] = "auto"
|
||||
model_type: str = "mamba2"
|
||||
|
||||
def __post_init__(self):
|
||||
if not hasattr(self, "intermediate_size"):
|
||||
self.intermediate_size = int(self.expand * self.hidden_size)
|
||||
if not hasattr(self, "head_dim"):
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
if self.time_step_rank == "auto":
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||
|
||||
|
||||
class MambaRMSNormGated(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((hidden_size,))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def __call__(self, hidden_states, gate=None):
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.silu(gate)
|
||||
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
||||
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states
|
||||
|
||||
|
||||
class DepthWiseConv1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.padding = padding
|
||||
self.groups = groups if groups is not None else in_channels
|
||||
|
||||
# Ensure in_channels and out_channels are the same for depthwise conv
|
||||
assert in_channels == out_channels, "In and out channels must be the same for depthwise convolution"
|
||||
# Ensure groups is equal to in_channels for depthwise conv
|
||||
assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
|
||||
|
||||
# Initialize weight with shape (out_channels, kernel_size, 1)
|
||||
self.weight = mx.random.normal((out_channels, kernel_size, 1))
|
||||
self.bias = mx.zeros((out_channels,)) if bias else None
|
||||
|
||||
def __call__(self, x, cache=None):
|
||||
B, L, C = x.shape
|
||||
_, K, _ = self.weight.shape
|
||||
|
||||
if cache is not None:
|
||||
x = mx.concatenate([cache, x], axis=1)
|
||||
else:
|
||||
x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)])
|
||||
|
||||
y = mx.conv_general(x, self.weight, groups=self.groups)
|
||||
|
||||
if self.bias is not None:
|
||||
y = y + self.bias
|
||||
|
||||
return y, x[:, -K + 1 :, :]
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.intermediate_size = args.intermediate_size
|
||||
self.time_step_rank = args.time_step_rank
|
||||
self.conv_kernel_size = args.conv_kernel
|
||||
self.hidden_size = args.hidden_size
|
||||
self.state_size = args.state_size
|
||||
self.num_heads = args.num_heads
|
||||
self.head_dim = args.hidden_size // args.num_heads
|
||||
self.n_groups = args.n_groups
|
||||
|
||||
# projection_size = 2 * args.intermediate_size + 2 * args.n_groups * args.state_size + args.num_heads
|
||||
projection_size = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
|
||||
self.in_proj = nn.Linear(
|
||||
args.hidden_size,
|
||||
projection_size,
|
||||
bias=args.use_bias
|
||||
)
|
||||
|
||||
# self.conv_dim = args.intermediate_size + 2 * args.n_groups * args.state_size
|
||||
self.conv_dim = args.intermediate_size + 2 * args.state_size
|
||||
self.conv1d = DepthWiseConv1d(
|
||||
in_channels=self.conv_dim,
|
||||
out_channels=self.conv_dim,
|
||||
kernel_size=args.conv_kernel,
|
||||
bias=args.use_conv_bias,
|
||||
groups=self.conv_dim,
|
||||
padding=args.conv_kernel - 1
|
||||
)
|
||||
|
||||
self.A_log = mx.zeros(args.num_heads)
|
||||
self.D = mx.ones((args.num_heads,))
|
||||
self.dt_bias = mx.zeros(args.num_heads)
|
||||
|
||||
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||||
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
def ssm_step(self, x, state, dt):
|
||||
A = -mx.exp(self.A_log)
|
||||
D = self.D
|
||||
dt = nn.softplus(dt + self.dt_bias)
|
||||
|
||||
B, C = mx.split(x, indices_or_sections=[self.state_size * self.n_groups], axis=-1)
|
||||
|
||||
batch_size = B.shape[0]
|
||||
B = B.reshape(batch_size, self.n_groups, self.state_size)
|
||||
C = C.reshape(batch_size, -1, self.state_size)
|
||||
|
||||
dt = dt.reshape(batch_size, self.num_heads, 1)
|
||||
A = A.reshape(1, self.num_heads, 1)
|
||||
|
||||
if state is None:
|
||||
new_state = dt * B
|
||||
else:
|
||||
new_state = dt * (B + state * mx.exp(dt * A))
|
||||
|
||||
y = mx.sum(new_state[:, :, None, :] * C[:, None, :, :], axis=(-1, -2))
|
||||
y = y + D * x[:, :self.num_heads]
|
||||
return y, new_state
|
||||
|
||||
def __call__(self, x, cache):
|
||||
B, T, D = x.shape
|
||||
if cache is None:
|
||||
cache = [None, None]
|
||||
|
||||
outputs = []
|
||||
for t in range(T):
|
||||
xt = x[:, t, :]
|
||||
zxbcdt = self.in_proj(xt)
|
||||
|
||||
z, xBC, dt = mx.split(
|
||||
zxbcdt,
|
||||
# indices_or_sections=[self.conv_dim, self.conv_dim + self.intermediate_size],
|
||||
indices_or_sections=[
|
||||
self.intermediate_size,
|
||||
self.intermediate_size + 2 * self.state_size,
|
||||
self.num_heads
|
||||
],
|
||||
axis=-1
|
||||
)
|
||||
|
||||
# Use the new DepthWiseConv1d with caching
|
||||
conv_out, cache[0] = self.conv1d(mx.expand_dims(z, 1), cache[0])
|
||||
z = conv_out.squeeze(1)
|
||||
z = nn.silu(z)
|
||||
y_t, cache[1] = self.ssm_step(z, cache[1], dt)
|
||||
xBC = nn.silu(xBC)
|
||||
|
||||
# Element-wise multiplication
|
||||
output_t = y_t[:, :, None] * xBC[:, None, :]
|
||||
|
||||
output_t = self.norm(output_t)
|
||||
output_t = output_t.sum(axis=1)
|
||||
output_t = self.out_proj(output_t)
|
||||
outputs.append(output_t)
|
||||
|
||||
output = mx.stack(outputs, axis=1)
|
||||
return output
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.mixer = Mamba2Block(args)
|
||||
self.norm = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
return self.mixer(self.norm(x), cache) + x
|
||||
|
||||
|
||||
class Mamba2(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
||||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
x = self.embeddings(x)
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
for layer, c in zip(self.layers, cache):
|
||||
x = layer(x, c)
|
||||
return self.norm_f(x)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
|
||||
self.backbone = Mamba2(args)
|
||||
# self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, inputs: mx.array, cache=None):
|
||||
B, T = inputs.shape
|
||||
|
||||
x = self.backbone(inputs, cache)
|
||||
|
||||
if self.args.tie_word_embeddings:
|
||||
logits = self.backbone.embeddings.as_linear(x)
|
||||
else:
|
||||
logits = self.lm_head(x)
|
||||
|
||||
return logits
|
||||
|
||||
def sanitize(self, weights):
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k and v.ndim == 3:
|
||||
weights[k] = v.moveaxis(2, 1)
|
||||
return weights
|
||||
|
||||
def make_cache(self):
|
||||
return [MambaCache() for _ in range(len(self.layers))]
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.backbone.layers
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# ------
|
||||
|
||||
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
@ -296,130 +28,79 @@ class ModelArgs(BaseModelArgs):
|
||||
time_step_max: float
|
||||
time_step_floor: float
|
||||
rescale_prenorm_residual: bool
|
||||
use_cache: bool
|
||||
rms_norm: bool
|
||||
chunk_size: int
|
||||
tie_word_embeddings: bool
|
||||
use_cache: bool = True
|
||||
intermediate_size: int = None
|
||||
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
||||
time_step_rank: Union[int, str] = "auto"
|
||||
model_type: str = "mamba2"
|
||||
|
||||
def __post_init__(self):
|
||||
if not hasattr(self, "intermediate_size"):
|
||||
self.intermediate_size = int(self.expand * self.hidden_size)
|
||||
self.intermediate_size = int(self.expand * self.hidden_size) # E*D = ED
|
||||
|
||||
if not hasattr(self, "head_dim"):
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
if self.time_step_rank == "auto":
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||
|
||||
|
||||
def selective_scan(x, A, B, C, chunk_size):
|
||||
"""
|
||||
Selective scan implementation for training.
|
||||
|
||||
class MambaRMSNormGated(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((hidden_size,))
|
||||
self.variance_epsilon = eps
|
||||
Arguments
|
||||
x: (batch, seqlen, n_heads, d_head)
|
||||
A: (batch, seqlen, n_heads)
|
||||
B: (batch, seqlen, n_heads, d_state)
|
||||
C: (batch, seqlen, n_heads, d_state)
|
||||
|
||||
def __call__(self, hidden_states, gate=None):
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.silu(gate)
|
||||
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
||||
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states
|
||||
Return
|
||||
y: (batch, seqlen, n_heads, d_head)
|
||||
"""
|
||||
assert x.shape[1] % chunk_size == 0
|
||||
|
||||
|
||||
def silu(x):
|
||||
return x * mx.sigmoid(x)
|
||||
|
||||
def ssd(x, A, B, C, chunk_size):
|
||||
# Replace einsum operations with explicit reshape and matrix multiply
|
||||
batch, seqlen, nheads, dim = x.shape
|
||||
B = mx.expand_dims(B, axis=2)
|
||||
C = mx.expand_dims(C, axis=2)
|
||||
# Reshape into chunks
|
||||
def chunk_reshape(m):
|
||||
shape = list(m.shape)
|
||||
shape[1:2] = [shape[1] // chunk_size, chunk_size]
|
||||
return m.reshape(shape)
|
||||
|
||||
state = mx.zeros((batch, nheads, dim, B.shape[-1]))
|
||||
outputs = []
|
||||
x, A, B, C = map(chunk_reshape, (x, A, B, C))
|
||||
A = mx.transpose(A, [0, 3, 1, 2])
|
||||
|
||||
for i in range(0, seqlen, chunk_size):
|
||||
chunk = slice(i, min(i + chunk_size, seqlen))
|
||||
dA = mx.exp(mx.expand_dims(A[chunk], axis=0))
|
||||
|
||||
# Replace einsum with explicit operations
|
||||
x_chunk = x[:, chunk] # [batch, chunk_size, nheads, dim]
|
||||
x_chunk = mx.transpose(x_chunk, [0, 2, 3, 1]) # [batch, nheads, dim, chunk_size]
|
||||
B_chunk = B[:, chunk] # [batch, chunk_size, state_size]
|
||||
dBx = mx.matmul(x_chunk, B_chunk) # [batch, nheads, dim, state_size]
|
||||
|
||||
state = state * mx.expand_dims(dA, axis=-1) + dBx
|
||||
|
||||
# Replace einsum with explicit operations
|
||||
C_chunk = C[:, chunk] # [batch, chunk_size, state_size]
|
||||
y = mx.matmul(state, mx.transpose(C_chunk, [0, 2, 1])) # [batch, nheads, dim, chunk_size]
|
||||
y = mx.transpose(y, [0, 3, 1, 2]) # [batch, chunk_size, nheads, dim]
|
||||
outputs.append(y)
|
||||
# Compute cumulative sums
|
||||
A_cumsum = mx.cumsum(A, axis=-1)
|
||||
|
||||
return mx.concatenate(outputs, axis=1), state
|
||||
# Process chunks
|
||||
L = mx.exp(selective_cumsum(A))
|
||||
Y_diag = mx.einsum('bclhn,bcshn,bhcls,bcshp->bclhp', C, B, L, x)
|
||||
|
||||
decay_states = mx.exp(A_cumsum[..., -1:] - A_cumsum)
|
||||
states = mx.einsum('bclhn,bhcl,bclhp->bchpn', B, decay_states, x)
|
||||
|
||||
initial_states = mx.zeros_like(states[:, :1])
|
||||
states = mx.concatenate([initial_states, states], axis=1)
|
||||
decay_chunk = mx.exp(selective_cumsum(mx.pad(A_cumsum[..., -1], ((0,0), (0,0), (1,0)))))
|
||||
new_states = mx.einsum('bhzc,bchpn->bzhpn', decay_chunk, states)
|
||||
states = new_states[:, :-1]
|
||||
|
||||
state_decay_out = mx.exp(A_cumsum)
|
||||
Y_off = mx.einsum('bclhn,bchpn,bhcl->bclhp', C, states, state_decay_out)
|
||||
|
||||
Y = (Y_diag + Y_off).reshape((-1, x.shape[1] * chunk_size, *Y_diag.shape[-2:]))
|
||||
return Y
|
||||
|
||||
class DepthWiseConv1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.padding = padding
|
||||
self.groups = groups if groups is not None else in_channels
|
||||
|
||||
assert in_channels == out_channels, "In and out channels must be same for depthwise convolution"
|
||||
assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
|
||||
|
||||
self.weight = mx.random.normal((in_channels, 1, kernel_size))
|
||||
self.bias = mx.zeros((out_channels,)) if bias else None
|
||||
|
||||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||
B, L, C = x.shape
|
||||
K = self.kernel_size
|
||||
|
||||
assert C == self.in_channels, f"Input channels {C} doesn't match expected {self.in_channels}"
|
||||
|
||||
if cache is not None and 'conv_states' in cache:
|
||||
conv_states = cache['conv_states']
|
||||
if conv_states is not None:
|
||||
assert conv_states.shape[0] == B, "Cache batch size mismatch"
|
||||
assert conv_states.shape[2] == C, "Cache channel count mismatch"
|
||||
x = mx.concatenate([conv_states, x], axis=1)
|
||||
|
||||
# Process each channel independently
|
||||
outputs = []
|
||||
for c in range(C):
|
||||
x_c = x[:, :, c]
|
||||
x_c = mx.expand_dims(x_c, axis=1)
|
||||
|
||||
w_c = self.weight[c]
|
||||
if w_c.ndim == 2:
|
||||
w_c = mx.expand_dims(w_c, axis=0)
|
||||
elif w_c.ndim == 1:
|
||||
w_c = mx.expand_dims(mx.expand_dims(w_c, axis=0), axis=0)
|
||||
|
||||
# Apply convolution
|
||||
y_c = mx.conv_general(
|
||||
x_c,
|
||||
w_c,
|
||||
stride=1,
|
||||
padding=0
|
||||
)
|
||||
|
||||
if self.bias is not None:
|
||||
y_c = y_c + self.bias[c]
|
||||
|
||||
outputs.append(mx.squeeze(y_c, axis=1))
|
||||
|
||||
y = mx.stack(outputs, axis=-1)
|
||||
|
||||
# Update cache
|
||||
if cache is not None:
|
||||
cache['conv_states'] = x[:, -K+1:, :] if x.shape[1] >= K else x
|
||||
|
||||
return y
|
||||
def selective_cumsum(x: mx.array) -> mx.array:
|
||||
"""Stable selective cumulative sum calculation."""
|
||||
T = x.shape[-1]
|
||||
x = mx.repeat(x[..., None], T, axis=-1)
|
||||
mask = mx.tril(mx.ones((T, T)), k=-1)
|
||||
x = x * mask
|
||||
x_cumsum = mx.cumsum(x, axis=-2)
|
||||
mask = mx.tril(mx.ones((T, T)), k=0)
|
||||
return mx.where(mask, x_cumsum, float('-inf'))
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
@ -427,165 +108,250 @@ class Mamba2Block(nn.Module):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
|
||||
self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias)
|
||||
# Project input to get various components [z, x, B, C, dt]
|
||||
projection_size = (2 * args.intermediate_size + 2 * args.n_groups * args.state_size + args.num_heads)
|
||||
self.in_proj = nn.Linear(
|
||||
args.hidden_size,
|
||||
projection_size,
|
||||
bias=args.use_bias
|
||||
)
|
||||
|
||||
conv_dim = args.intermediate_size + 2 * args.state_size
|
||||
self.conv1d = DepthWiseConv1d(
|
||||
# Convolution layer
|
||||
conv_dim = args.intermediate_size + 2 * args.n_groups * args.state_size
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=conv_dim,
|
||||
out_channels=conv_dim,
|
||||
kernel_size=args.conv_kernel,
|
||||
groups=conv_dim,
|
||||
bias=args.use_conv_bias,
|
||||
padding=args.conv_kernel - 1
|
||||
padding=args.conv_kernel - 1,
|
||||
bias=args.use_conv_bias
|
||||
)
|
||||
|
||||
self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
self.D = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
# SSM parameters
|
||||
self.dt_bias = mx.zeros(args.num_heads)
|
||||
self.A_log = mx.zeros(args.num_heads)
|
||||
self.D = mx.ones(args.num_heads)
|
||||
|
||||
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||
# Output projections
|
||||
self.norm = nn.RMSNorm(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||||
|
||||
if args.rescale_prenorm_residual:
|
||||
layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
|
||||
self.out_proj.weight = self.out_proj.weight * layer_scale
|
||||
def __call__(self, u: mx.array, cache=None) -> mx.array:
|
||||
# return self.forward_training(x) if x.shape[1] > 1 else self.forward_inference(x, cache)
|
||||
|
||||
def __call__(self, x: mx.array, cache=None):
|
||||
if cache is not None:
|
||||
return self.step(x, cache)
|
||||
|
||||
# Regular forward pass code remains the same...
|
||||
d_model = self.args.intermediate_size
|
||||
d_state = self.args.state_size
|
||||
n_heads = self.args.num_heads
|
||||
# def forward_training(self, u: mx.array) -> mx.array:
|
||||
# # Reset cache during training
|
||||
# self.cache = None
|
||||
|
||||
A = -mx.exp(self.A_log)
|
||||
zxbcdt = self.in_proj(x)
|
||||
|
||||
splits = [d_model, d_model + 2 * d_state, n_heads]
|
||||
z = zxbcdt[:, :, :splits[0]]
|
||||
xBC = zxbcdt[:, :, splits[0]:splits[0] + splits[1]]
|
||||
dt = zxbcdt[:, :, -splits[2]:]
|
||||
# # Input projection and splitting
|
||||
# zxbcdt = self.in_proj(u)
|
||||
# z, xBC, dt = mx.split(
|
||||
# zxbcdt,
|
||||
# [
|
||||
# self.args.hidden_size,
|
||||
# self.args.hidden_size + 2 * self.args.state_size
|
||||
# ],
|
||||
# axis=-1
|
||||
# )
|
||||
|
||||
# # Time step processing
|
||||
# dt = mx.clip(
|
||||
# nn.softplus(dt + self.dt_bias),
|
||||
# self.args.time_step_min,
|
||||
# self.args.time_step_max
|
||||
# )
|
||||
|
||||
# # Convolution processing
|
||||
# xBC_t = mx.transpose(xBC, [0, 2, 1])
|
||||
# conv_out = self.conv1d(xBC_t)
|
||||
# xBC = mx.transpose(conv_out, [0, 2, 1])[:, :u.shape[1]]
|
||||
# xBC = mx.sigmoid(xBC) * xBC # SiLU
|
||||
|
||||
# # Split states
|
||||
# x, B, C = mx.split(
|
||||
# xBC,
|
||||
# [self.args.hidden_size, self.args.state_size],
|
||||
# axis=-1
|
||||
# )
|
||||
|
||||
# # Reshape for selective scan
|
||||
# x = x.reshape((-1, x.shape[1], self.args.num_heads, self.args.head_dim))
|
||||
# A = -mx.exp(self.A_log)
|
||||
|
||||
# # Apply selective scan
|
||||
# y = selective_scan(
|
||||
# x * dt[..., None],
|
||||
# A * dt,
|
||||
# B[..., None, :],
|
||||
# C[..., None, :],
|
||||
# self.args.chunk_size
|
||||
# )
|
||||
|
||||
# # Output processing
|
||||
# y = y + x * self.D[None, None, :, None]
|
||||
# y = y.reshape((-1, y.shape[1], self.args.hidden_size))
|
||||
# y = self.norm(y, z)
|
||||
# y = self.out_proj(y)
|
||||
|
||||
# return y
|
||||
|
||||
# def forward_inference(self, u: mx.array, cache=None) -> mx.array:
|
||||
# """
|
||||
# u: (B, 1, D)
|
||||
# cache: (h_cache, conv_cache)
|
||||
# """
|
||||
# """Single token processing during inference."""
|
||||
# assert u.shape[1] == 1, "Inference mode expects single token"
|
||||
|
||||
# batch_size = u.shape[0]
|
||||
# # Use provided cache or create new one
|
||||
# self.cache = cache if cache is not None else Mamba2Cache.get_cache(self.args, batch_size, None)
|
||||
|
||||
# # Project input
|
||||
# zxbcdt = self.in_proj(u.squeeze(1)) # (B, 2D)
|
||||
# d_mlp = (zxbcdt.shape[-1] - 2 * self.args.hidden_size - 2 * self.args.n_groups * self.args.state_size - self.args.num_heads) // 2
|
||||
|
||||
# # (1, 768) (1, 0) (1, 0) (1, 256) (1, 0) (1, 3328)
|
||||
# y0, z0, x0, z, xBC, dt = mx.split(
|
||||
# zxbcdt,
|
||||
# [
|
||||
# d_mlp,
|
||||
# d_mlp,
|
||||
# self.args.hidden_size,
|
||||
# self.args.hidden_size + 2 * self.args.n_groups * self.args.state_size,
|
||||
# self.args.num_heads
|
||||
# ],
|
||||
# axis=-1
|
||||
# )
|
||||
|
||||
# # Update convolution state and apply
|
||||
# conv_state = self.cache.update_conv_state(xBC)
|
||||
# xBC = mx.sum(conv_state[:, :, -1] * mx.transpose(self.conv1d.weight, [1, 0, 2]), axis=-1) # (B, D) (4, 1792)
|
||||
|
||||
# if self.args.use_conv_bias:
|
||||
# xBC = xBC + self.conv1d.bias
|
||||
|
||||
# xBC = mx.sigmoid(xBC) * xBC # SiLU (4, 1792)
|
||||
|
||||
# # Split states and ensure proper shapes
|
||||
# a0, x, B, C = mx.split(
|
||||
# xBC, # (4, 1792)
|
||||
# [
|
||||
# self.args.hidden_size,
|
||||
# self.args.n_groups * self.args.state_size,
|
||||
# self.args.n_groups * self.args.state_size
|
||||
# ],
|
||||
# axis=-1
|
||||
# )
|
||||
|
||||
# # SSM step with explicit shapes
|
||||
# A = -mx.exp(self.A_log) # (num_heads) (24,)
|
||||
# print(A.shape) # (24,)
|
||||
# print(dt.shape) # (1, 3328)
|
||||
# dA = mx.exp(dt * A[None, :]) # Shape: (batch_size, num_heads) <------- her eis the error
|
||||
|
||||
# # Reshape x considering intermediate size
|
||||
# # x shape should be (batch_size * num_heads, head_dim)
|
||||
# x = mx.reshape(x, (batch_size, self.args.num_heads, -1))
|
||||
# assert x.shape[-1] == self.args.head_dim, f"Head dimension mismatch: {x.shape[-1]} vs {self.args.head_dim}"
|
||||
|
||||
# B = mx.reshape(B, (batch_size, -1)) # Should be (batch_size, state_size)
|
||||
# C = mx.reshape(C, (batch_size, -1)) # Should be (batch_size, state_size)
|
||||
|
||||
# # Compute dBx with explicit shapes
|
||||
# dBx = mx.einsum('bh,bs,bhd->bhds', dt, B, x)
|
||||
|
||||
# ssm_state = self.cache.update_ssm_state(dA, dBx)
|
||||
|
||||
# y = mx.einsum('bhds,bs->bhd', ssm_state, C)
|
||||
# y = y + x * self.D[None, :, None]
|
||||
# y = mx.reshape(y, (batch_size, self.args.hidden_size))
|
||||
|
||||
# # Output processing
|
||||
# y = self.norm(y, z)
|
||||
|
||||
# if d_mlp > 0:
|
||||
# y = mx.cat([nn.silu(z0) * x0, y], axis=-1)
|
||||
|
||||
# y = self.out_proj(y)
|
||||
|
||||
# return mx.expand_dims(y, 1)
|
||||
|
||||
assert u.shape[1] == 1, "Inference mode expects single token"
|
||||
|
||||
batch_size = u.shape[0]
|
||||
# Use provided cache or create new one
|
||||
self.cache = cache if cache is not None else Mamba2Cache.get_cache(self.args, batch_size, None)
|
||||
|
||||
# Project input
|
||||
zxbcdt = self.in_proj(u.squeeze(1)) # (B, projection_size)
|
||||
|
||||
# Calculate splits based on model dimensions
|
||||
d_mlp = self.args.intermediate_size
|
||||
d_state = self.args.state_size * self.args.n_groups
|
||||
|
||||
# Split the projection into its components
|
||||
splits = [
|
||||
d_mlp, # y0
|
||||
d_mlp, # z0
|
||||
self.args.hidden_size, # x0
|
||||
self.args.hidden_size, # z
|
||||
d_state * 2, # xBC (includes both B and C)
|
||||
self.args.num_heads # dt
|
||||
]
|
||||
|
||||
y0, z0, x0, z, xBC, dt = mx.split(zxbcdt, splits[:-1], axis=-1)
|
||||
|
||||
# Update convolution state and apply
|
||||
conv_state = self.cache.update_conv_state(xBC)
|
||||
xBC = mx.sum(conv_state[:, :, -1] * mx.transpose(self.conv1d.weight, [1, 0, 2]), axis=-1)
|
||||
|
||||
if self.args.use_conv_bias:
|
||||
xBC = xBC + self.conv1d.bias
|
||||
|
||||
xBC = mx.sigmoid(xBC) * xBC # SiLU
|
||||
|
||||
# Split states and reshape
|
||||
x, BC = mx.split(xBC, [self.args.intermediate_size], axis=-1)
|
||||
B, C = mx.split(BC, [d_state], axis=-1)
|
||||
|
||||
# Reshape for SSM computation
|
||||
x = mx.reshape(x, (batch_size, self.args.num_heads, -1)) # (B, H, head_dim)
|
||||
B = mx.reshape(B, (batch_size, self.args.num_heads, -1)) # (B, H, state_per_head)
|
||||
C = mx.reshape(C, (batch_size, self.args.num_heads, -1)) # (B, H, state_per_head)
|
||||
|
||||
# Process dt to match expected shape
|
||||
dt = mx.reshape(dt, (batch_size, self.args.num_heads)) # (B, H)
|
||||
dt = mx.clip(
|
||||
nn.softplus(dt + self.dt_bias),
|
||||
self.args.time_step_min,
|
||||
self.args.time_step_max
|
||||
)
|
||||
dt = mx.maximum(dt, self.args.time_step_floor)
|
||||
|
||||
xBC = silu(self.conv1d(xBC))
|
||||
|
||||
x = xBC[:, :, :d_model]
|
||||
B = xBC[:, :, d_model:d_model + d_state]
|
||||
C = xBC[:, :, -d_state:]
|
||||
|
||||
b, l, hp = x.shape
|
||||
h = self.args.num_heads
|
||||
p = hp // h
|
||||
x = mx.reshape(x, (b, l, h, p))
|
||||
|
||||
y, ssm_state = ssd(x * mx.expand_dims(dt, -1), A * dt, B, C, self.args.chunk_size)
|
||||
y = y + x * mx.expand_dims(self.D, -1)
|
||||
y = mx.reshape(y, (b, l, h * p))
|
||||
|
||||
y = self.norm(y + z)
|
||||
|
||||
# SSM step
|
||||
A = -mx.exp(self.A_log) # (H,)
|
||||
dA = mx.exp(dt * A[None, :]) # (B, H)
|
||||
|
||||
# Compute dBx
|
||||
dBx = mx.einsum('bh,bhs,bhd->bhds', dt, B, x)
|
||||
|
||||
# Update SSM state and compute output
|
||||
ssm_state = self.cache.update_ssm_state(dA, dBx)
|
||||
y = mx.einsum('bhds,bhs->bhd', ssm_state, C)
|
||||
y = y + x * self.D[None, :, None]
|
||||
|
||||
# Reshape output
|
||||
y = mx.reshape(y, (batch_size, self.args.hidden_size))
|
||||
|
||||
# Final output processing
|
||||
y = self.norm(y, z)
|
||||
|
||||
if d_mlp > 0:
|
||||
y = mx.concat([nn.silu(z0) * x0, y], axis=-1)
|
||||
|
||||
y = self.out_proj(y)
|
||||
|
||||
if self.args.residual_in_fp32:
|
||||
y = y.astype(mx.float32)
|
||||
|
||||
return y
|
||||
|
||||
def step(self, u: mx.array, cache):
|
||||
batch_size = u.shape[0]
|
||||
seq_len = u.shape[1]
|
||||
outputs = []
|
||||
|
||||
# Initialize cache if needed
|
||||
if cache.conv_states is None:
|
||||
conv_dim = self.args.intermediate_size + 2 * self.args.state_size
|
||||
cache.conv_states = mx.zeros((
|
||||
batch_size,
|
||||
self.args.conv_kernel - 1,
|
||||
conv_dim
|
||||
))
|
||||
|
||||
if cache.ssm_state is None:
|
||||
cache.ssm_state = mx.zeros((
|
||||
batch_size,
|
||||
self.args.num_heads,
|
||||
self.args.head_dim,
|
||||
self.args.state_size
|
||||
))
|
||||
|
||||
for pos in range(seq_len):
|
||||
u_t = u[:, pos:pos+1, :]
|
||||
zxbcdt = self.in_proj(u_t)
|
||||
|
||||
d_model = self.args.intermediate_size
|
||||
d_state = self.args.state_size
|
||||
n_heads = self.args.num_heads
|
||||
|
||||
z = zxbcdt[:, :, :d_model]
|
||||
xBC = zxbcdt[:, :, d_model:d_model + 2*d_state + d_model]
|
||||
dt = zxbcdt[:, :, -(n_heads):]
|
||||
|
||||
dt = mx.reshape(dt, (batch_size, n_heads))
|
||||
dt = mx.clip(
|
||||
nn.softplus(dt + self.dt_bias),
|
||||
self.args.time_step_min,
|
||||
self.args.time_step_max
|
||||
)
|
||||
dt = mx.maximum(dt, self.args.time_step_floor)
|
||||
|
||||
# Create a temporary cache dictionary for the convolution
|
||||
conv_cache = {'conv_states': cache.conv_states}
|
||||
xBC = self.conv1d(xBC, cache=conv_cache)
|
||||
cache.conv_states = conv_cache['conv_states']
|
||||
|
||||
xBC = silu(xBC)
|
||||
|
||||
x = xBC[:, :, :d_model]
|
||||
B = xBC[:, :, d_model:d_model + d_state]
|
||||
C = xBC[:, :, -d_state:]
|
||||
|
||||
x = mx.reshape(x, (batch_size, 1, n_heads, self.args.head_dim))
|
||||
x = mx.squeeze(x, axis=1)
|
||||
|
||||
B = mx.reshape(B, (batch_size, 1, d_state))
|
||||
B = mx.broadcast_to(B, (batch_size, n_heads, d_state))
|
||||
B = mx.expand_dims(B, axis=2)
|
||||
|
||||
C = mx.reshape(C, (batch_size, 1, d_state))
|
||||
C = mx.broadcast_to(C, (batch_size, n_heads, d_state))
|
||||
C = mx.expand_dims(C, axis=3)
|
||||
|
||||
A = -mx.exp(self.A_log)
|
||||
dA = mx.exp(dt * mx.expand_dims(A, 0))
|
||||
dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
|
||||
|
||||
x = mx.expand_dims(x, axis=3)
|
||||
dBx = mx.matmul(x, B)
|
||||
|
||||
cache.ssm_state = cache.ssm_state * dA + dBx
|
||||
|
||||
y = mx.matmul(cache.ssm_state, C)
|
||||
y = mx.squeeze(y, axis=-1)
|
||||
|
||||
y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
|
||||
|
||||
y = mx.reshape(y, (batch_size, 1, n_heads * self.args.head_dim))
|
||||
y = self.norm(y + z)
|
||||
y = self.out_proj(y)
|
||||
|
||||
if self.args.residual_in_fp32:
|
||||
y = y.astype(mx.float32)
|
||||
|
||||
outputs.append(y)
|
||||
|
||||
return mx.concatenate(outputs, axis=1)
|
||||
|
||||
return mx.expand_dims(y, 1) # (B, 1, D)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
@ -594,11 +360,12 @@ class ResidualBlock(nn.Module):
|
||||
self.mixer = Mamba2Block(args)
|
||||
self.norm = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
return self.mixer(self.norm(x), cache) + x
|
||||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||
# x : (B, L, D)
|
||||
return self.mixer(self.norm(x), cache) + x # (B, L, D)
|
||||
|
||||
|
||||
class Mamba2(nn.Module):
|
||||
class Mamba2Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
@ -606,12 +373,15 @@ class Mamba2(nn.Module):
|
||||
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
||||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||
# x : (B, L)
|
||||
x = self.embeddings(x)
|
||||
# x : (B, L, D)
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
for layer, c in zip(self.layers, cache):
|
||||
x = layer(x, c)
|
||||
|
||||
for layer, layer_cache in zip(self.layers, cache):
|
||||
x = layer(x, layer_cache)
|
||||
return self.norm_f(x)
|
||||
|
||||
|
||||
@ -619,14 +389,13 @@ class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
self.backbone = Mamba2Model(args)
|
||||
|
||||
self.backbone = Mamba2(args)
|
||||
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, inputs: mx.array, cache=None):
|
||||
def __call__(self, inputs: mx.array, cache=None) -> mx.array:
|
||||
# inputs : (B, L)
|
||||
B, T = inputs.shape
|
||||
|
||||
x = self.backbone(inputs, cache)
|
||||
@ -637,24 +406,19 @@ class Model(nn.Module):
|
||||
logits = self.lm_head(x)
|
||||
|
||||
return logits
|
||||
|
||||
def make_cache(self):
|
||||
return [Mamba2Cache() for _ in range(len(self.layers))]
|
||||
|
||||
def make_cache(self, batch_size=1):
|
||||
return [Mamba2Cache(
|
||||
batch_size=batch_size,
|
||||
hidden_size=self.args.hidden_size,
|
||||
state_size=self.args.state_size,
|
||||
conv_kernel=self.args.conv_kernel,
|
||||
num_heads=self.args.num_heads,
|
||||
head_dim=self.args.head_dim
|
||||
) for _ in range(len(self.backbone.layers))]
|
||||
|
||||
def sanitize(self, weights):
|
||||
sanitized = {}
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k:
|
||||
# Ensure weights are in correct shape (channels, 1, kernel_size)
|
||||
if v.ndim == 2:
|
||||
v = mx.expand_dims(v, axis=1)
|
||||
elif v.ndim == 1:
|
||||
v = mx.expand_dims(mx.expand_dims(v, axis=0), axis=0)
|
||||
sanitized[k] = v
|
||||
else:
|
||||
sanitized[k] = v
|
||||
return sanitized
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.backbone.layers
|
||||
if "conv1d.weight" in k and v.ndim == 3:
|
||||
weights[k] = v.moveaxis(2, 1)
|
||||
return weights
|
@ -1,437 +1,490 @@
|
||||
"""
|
||||
mamba2-minimal
|
||||
==============
|
||||
# coding=utf-8
|
||||
# Copyright 2024 state-spaces/mamba2 org and HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""PyTorch MAMBA2 model."""
|
||||
|
||||
A minimal, single-file implementation of the Mamba-2 model in PyTorch.
|
||||
|
||||
> **Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality**
|
||||
> Authors: Tri Dao, Albert Gu
|
||||
> Paper: https://arxiv.org/abs/2405.21060
|
||||
"""
|
||||
|
||||
import json
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Iterable, NamedTuple, TypeAlias, cast
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange, repeat
|
||||
from torch import LongTensor, Tensor, nn
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
Device: TypeAlias = str | torch.device | None
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class Mamba2Config:
|
||||
d_model: int # model dimension (D)
|
||||
n_layer: int = 24 # number of Mamba-2 layers in the language model
|
||||
d_state: int = 128 # state dimension (N)
|
||||
d_conv: int = 4 # convolution kernel size
|
||||
expand: int = 2 # expansion factor (E)
|
||||
headdim: int = 64 # head dimension (P)
|
||||
chunk_size: int = 64 # matrix partition size (Q)
|
||||
vocab_size: int = 50277
|
||||
pad_vocab_size_multiple: int = 16
|
||||
def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int):
|
||||
"""
|
||||
Padding x tensor with `pad_size` on the seq_len dim (dim=1)
|
||||
|
||||
def __post_init__(self):
|
||||
self.d_inner = self.expand * self.d_model
|
||||
assert self.d_inner % self.headdim == 0
|
||||
self.nheads = self.d_inner // self.headdim
|
||||
if self.vocab_size % self.pad_vocab_size_multiple != 0:
|
||||
self.vocab_size += (
|
||||
self.pad_vocab_size_multiple
|
||||
- self.vocab_size % self.pad_vocab_size_multiple
|
||||
)
|
||||
Assumes that we only have tensors of either size 4 or 3
|
||||
"""
|
||||
pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0)
|
||||
|
||||
return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0)
|
||||
|
||||
|
||||
class InferenceCache(NamedTuple):
|
||||
conv_state: Tensor # (batch, d_inner + 2 * d_state, d_conv)
|
||||
ssm_state: Tensor # (batch, nheads, headdim, d_state)
|
||||
def reshape_into_chunks(input_tensor, pad_size, chunk_size):
|
||||
"""
|
||||
Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and
|
||||
simultaneously splitting it into chunk sequences.
|
||||
|
||||
@staticmethod
|
||||
def alloc(batch_size: int, args: Mamba2Config, device: Device = None):
|
||||
return InferenceCache(
|
||||
torch.zeros(
|
||||
batch_size, args.d_inner + 2 * args.d_state, args.d_conv, device=device
|
||||
),
|
||||
torch.zeros(
|
||||
batch_size, args.nheads, args.headdim, args.d_state, device=device
|
||||
),
|
||||
Assumes that we only have tensors of either size 4 or 3
|
||||
"""
|
||||
# [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
|
||||
input_tensor = pad_tensor_by_size(input_tensor, pad_size)
|
||||
|
||||
if len(input_tensor.shape) == 3:
|
||||
# [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
|
||||
return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2])
|
||||
else:
|
||||
# [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
|
||||
return input_tensor.reshape(
|
||||
input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3]
|
||||
)
|
||||
|
||||
|
||||
class Mamba2LMHeadModel(nn.Module):
|
||||
def __init__(self, args: Mamba2Config, device: Device = None):
|
||||
def segment_sum(input_tensor):
|
||||
"""
|
||||
More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions.
|
||||
"""
|
||||
chunk_size = input_tensor.size(-1)
|
||||
# 1. expand input tensor to have an additional dimension and repeat along that dimension
|
||||
# [..., chunk_size] -> [..., chunk_size, chunk_size]
|
||||
input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size)
|
||||
# 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag
|
||||
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1)
|
||||
input_tensor = input_tensor.masked_fill(~mask, 0)
|
||||
# 3. compute actual cumsum
|
||||
tensor_segsum = torch.cumsum(input_tensor, dim=-2)
|
||||
|
||||
# 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time)
|
||||
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0)
|
||||
tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf)
|
||||
return tensor_segsum
|
||||
|
||||
|
||||
class Mamba2Cache:
|
||||
"""
|
||||
Arguments:
|
||||
config: ModelArgs
|
||||
batch_size: int
|
||||
dtype: torch.dtype
|
||||
device: torch.device
|
||||
|
||||
Attributes:
|
||||
seqlen_offset: int
|
||||
dtype: torch.dtype
|
||||
conv_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, conv_kernel_size]
|
||||
ssm_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, ssm_state_size]
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, config: ModelArgs, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
|
||||
):
|
||||
self.seqlen_offset = 0
|
||||
self.dtype = dtype
|
||||
self.conv_kernel_size = config.conv_kernel
|
||||
self.intermediate_size = int(config.expand * config.hidden_size)
|
||||
|
||||
self.conv_states = {
|
||||
i: torch.zeros(
|
||||
batch_size,
|
||||
self.intermediate_size + 2 * config.n_groups * config.state_size,
|
||||
self.conv_kernel_size,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
for i in range(config.num_hidden_layers)
|
||||
}
|
||||
self.ssm_states = {
|
||||
i: torch.zeros(
|
||||
batch_size, config.num_heads, config.head_dim, config.state_size, device=device, dtype=dtype
|
||||
)
|
||||
for i in range(config.num_hidden_layers)
|
||||
}
|
||||
|
||||
def update_conv_state(
|
||||
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
|
||||
) -> torch.Tensor:
|
||||
conv_state = self.conv_states[layer_idx]
|
||||
cache_position = cache_position.clamp(0, self.conv_kernel_size - 1)
|
||||
|
||||
conv_state = conv_state.roll(shifts=-1, dims=-1)
|
||||
conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
|
||||
self.conv_states[layer_idx].zero_()
|
||||
self.conv_states[layer_idx] += conv_state
|
||||
return self.conv_states[layer_idx]
|
||||
|
||||
def reset(self):
|
||||
self.conv_states.zero_()
|
||||
self.ssm_states.zero_()
|
||||
|
||||
|
||||
class MambaRMSNormGated(torch.nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.device = device
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
self.backbone = nn.ModuleDict(
|
||||
dict(
|
||||
embedding=nn.Embedding(args.vocab_size, args.d_model, device=device),
|
||||
layers=nn.ModuleList(
|
||||
[
|
||||
nn.ModuleDict(
|
||||
dict(
|
||||
mixer=Mamba2(args, device=device),
|
||||
norm=RMSNorm(args.d_model, device=device),
|
||||
)
|
||||
)
|
||||
for _ in range(args.n_layer)
|
||||
]
|
||||
),
|
||||
norm_f=RMSNorm(args.d_model, device=device),
|
||||
def forward(self, hidden_states, gate=None):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states
|
||||
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.functional.silu(gate)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
|
||||
return self.weight * hidden_states
|
||||
|
||||
|
||||
class Mamba2Mixer(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.num_heads = config.num_heads
|
||||
self.hidden_size = config.hidden_size
|
||||
self.ssm_state_size = config.state_size
|
||||
self.conv_kernel_size = config.conv_kernel
|
||||
self.intermediate_size = int(config.expand * self.hidden_size)
|
||||
self.time_step_rank = int(config.time_step_rank)
|
||||
self.use_conv_bias = config.use_conv_bias
|
||||
self.act = nn.silu
|
||||
|
||||
self.layer_norm_epsilon = config.layer_norm_epsilon
|
||||
self.rms_norm = config.rms_norm
|
||||
|
||||
self.n_groups = config.n_groups
|
||||
self.head_dim = config.head_dim
|
||||
self.chunk_size = config.chunk_size
|
||||
|
||||
self.time_step_limit = config.time_step_limit
|
||||
self.time_step_min = config.time_step_min
|
||||
self.time_step_max = config.time_step_max
|
||||
|
||||
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=self.conv_dim,
|
||||
out_channels=self.conv_dim,
|
||||
bias=config.use_conv_bias,
|
||||
kernel_size=config.conv_kernel,
|
||||
groups=self.conv_dim,
|
||||
padding=config.conv_kernel - 1,
|
||||
)
|
||||
|
||||
# projection of the input hidden states
|
||||
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
|
||||
self.in_proj = nn.Linear(
|
||||
self.hidden_size,
|
||||
projection_size,
|
||||
bias=config.use_bias,
|
||||
)
|
||||
|
||||
self.dt_bias = torch.ones(self.num_heads)
|
||||
A = torch.arange(1, self.num_heads + 1)
|
||||
self.A_log = torch.log(A)
|
||||
self.D = torch.ones(self.num_heads)
|
||||
|
||||
self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
|
||||
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
||||
|
||||
def forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None):
|
||||
batch_size, seq_len, _ = input_states.shape
|
||||
dtype = input_states.dtype
|
||||
|
||||
# Gated MLP's linear projection
|
||||
projected_states = self.in_proj(input_states.squeeze(1))
|
||||
d_mlp = (
|
||||
projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2
|
||||
_, _, gate, hidden_states, dt = projected_states.split(
|
||||
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
|
||||
)
|
||||
|
||||
# Convolution sequence transformation
|
||||
if cache_params is not None:
|
||||
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
|
||||
ssm_state = ssm_state.to(hidden_states.device)
|
||||
if cache_params.seqlen_offset > 0:
|
||||
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
|
||||
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
|
||||
# handle batched generation - states are copied through
|
||||
conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states
|
||||
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
||||
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
||||
if self.use_conv_bias:
|
||||
hidden_states += self.conv1d.bias
|
||||
hidden_states = self.act(hidden_states)[:, None, ...] # [batch, 1, intermediate_size] : decoding
|
||||
else:
|
||||
hidden_states = hidden_states.transpose(1,2)
|
||||
conv_state = nn.functional.pad(
|
||||
hidden_states,
|
||||
(self.conv_kernel_size - hidden_states.shape[-1], 0)
|
||||
)
|
||||
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
||||
hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len]
|
||||
else:
|
||||
ssm_state = torch.zeros(
|
||||
(batch_size, self.num_heads, self.head_dim, self.ssm_state_size),
|
||||
device=hidden_states.device
|
||||
)
|
||||
)
|
||||
self.lm_head = nn.Linear(
|
||||
args.d_model, args.vocab_size, bias=False, device=device
|
||||
)
|
||||
self.lm_head.weight = self.backbone.embedding.weight
|
||||
hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2))
|
||||
|
||||
@staticmethod
|
||||
def from_pretrained(huggingface_model_id: str, device: Device = None):
|
||||
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME
|
||||
from transformers.utils.hub import cached_file
|
||||
hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1)
|
||||
A = -torch.exp(self.A_log.float()) # [num_heads]
|
||||
|
||||
config_path = cached_file(huggingface_model_id, CONFIG_NAME)
|
||||
assert config_path, "Failed to get huggingface config file"
|
||||
state_dict_path = cached_file(huggingface_model_id, WEIGHTS_NAME)
|
||||
assert state_dict_path, "Failed to get huggingface state dict file"
|
||||
if cache_params is not None and cache_params.seqlen_offset > 0:
|
||||
# Note: there is no need to pad parameter matrices here, as there is just one new token
|
||||
# for batched generation
|
||||
dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...]
|
||||
dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
|
||||
# [num_heads] -> [num_heads, head_dim]
|
||||
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
|
||||
|
||||
config = json.load(open(config_path))
|
||||
args = Mamba2Config(
|
||||
d_model=config["d_model"],
|
||||
n_layer=config["n_layer"],
|
||||
vocab_size=config["vocab_size"],
|
||||
pad_vocab_size_multiple=config["pad_vocab_size_multiple"],
|
||||
)
|
||||
dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
|
||||
dt = torch.clamp(dt, self.time_step_min) #, self.time_step_max)
|
||||
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
|
||||
# [bsz, num_heads, head_dim, state_size]
|
||||
dA = torch.exp(dt[..., None] * A)
|
||||
|
||||
map_location = "cpu" if device is None else device
|
||||
state_dict = torch.load(
|
||||
state_dict_path, weights_only=True, map_location=map_location, mmap=True
|
||||
)
|
||||
model = Mamba2LMHeadModel(args, device=device)
|
||||
model.load_state_dict(state_dict)
|
||||
model.eval()
|
||||
return model
|
||||
# Discretize B
|
||||
# [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
|
||||
# -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
|
||||
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
|
||||
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
|
||||
B = B.reshape(batch_size, -1, B.shape[-1])
|
||||
# [bsz, num_heads, head_dim, state_size]
|
||||
dB = dt[..., None] * B[..., None, :]
|
||||
|
||||
# Discretize x into dB
|
||||
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
|
||||
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
|
||||
dBx = dB * hidden_states[..., None]
|
||||
|
||||
# State calculation
|
||||
cache_params.ssm_states[self.layer_idx].copy_(
|
||||
cache_params.ssm_states[self.layer_idx] * dA + dBx
|
||||
)
|
||||
|
||||
# Subsequent output
|
||||
# [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
|
||||
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
|
||||
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
|
||||
C = C.reshape(batch_size, -1, C.shape[-1])
|
||||
# [bsz, num_heads, head_dim]
|
||||
|
||||
ssm_states = cache_params.ssm_states[self.layer_idx].to(C.dtype) # Shape: [b, h, d, n]
|
||||
# Reshape ssm_states to merge the first two dimensions
|
||||
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n]
|
||||
C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1]
|
||||
y = torch.bmm(ssm_states_reshaped, C_reshaped)
|
||||
y = y.view(batch_size, self.num_heads, self.head_dim)
|
||||
|
||||
# D skip connection
|
||||
# [num_heads] -> [num_heads, head_dim]
|
||||
D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
|
||||
y = (y + hidden_states * D).to(y.dtype)
|
||||
|
||||
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
|
||||
y = y.reshape(batch_size, -1)[:, None, ...]
|
||||
else:
|
||||
# begin ssd naive implementation without einsums
|
||||
dt = nn.functional.softplus(dt + self.dt_bias)
|
||||
dt = torch.clamp(dt, self.time_step_min)
|
||||
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
|
||||
B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
|
||||
C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
|
||||
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
|
||||
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
|
||||
pad_size = self.chunk_size - (seq_len % self.chunk_size)
|
||||
|
||||
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
|
||||
|
||||
# Discretize x and A
|
||||
hidden_states = hidden_states * dt[..., None]
|
||||
A = A.to(hidden_states.dtype) * dt
|
||||
|
||||
# Rearrange into blocks/chunks
|
||||
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
|
||||
|
||||
|
||||
# [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
|
||||
A = A.permute(0, 3, 1, 2)
|
||||
A_cumsum = torch.cumsum(A, dim=-1)
|
||||
|
||||
# 1. Compute the output for each intra-chunk (diagonal blocks)
|
||||
# This is the analog of a causal mask
|
||||
L = torch.exp(segment_sum(A))
|
||||
|
||||
# First, contraction of C and B to get G (attention-weights like)
|
||||
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n)
|
||||
G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
|
||||
|
||||
|
||||
# Step 2: Compute M, equivalent to applying attention mask to weights
|
||||
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
|
||||
M = M_intermediate.sum(dim=-1)
|
||||
|
||||
# Step 3: Compute Y_diag (apply to values)
|
||||
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3)
|
||||
|
||||
# (right term of low-rank factorization of off-diagonal blocks; B terms)
|
||||
|
||||
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
|
||||
B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None]
|
||||
# permute back B * decay states
|
||||
states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3)
|
||||
if cache_params is not None and cache_params.seqlen_offset > 0:
|
||||
previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...]
|
||||
else:
|
||||
previous_states = torch.zeros_like(states[:, :1])
|
||||
states = torch.cat([previous_states, states], dim=1)
|
||||
decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
|
||||
|
||||
states_permuted = states.permute(0, 2, 1, 3, 4)
|
||||
result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2)
|
||||
new_states = result.permute(0, 2, 1, 3, 4)
|
||||
states, ssm_state = new_states[:, :-1], new_states[:, -1]
|
||||
|
||||
# Compute state -> output conversion per chunk
|
||||
# (left term of low-rank factorization of off-diagonal blocks; C terms)
|
||||
state_decay_out = torch.exp(A_cumsum)
|
||||
# compute Yoff
|
||||
C_times_states = (C[..., None, :] * states[:, :, None, ...])
|
||||
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
|
||||
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
|
||||
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
|
||||
|
||||
y = Y_diag + Y_off
|
||||
# [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
|
||||
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
|
||||
|
||||
y = y + D_residual
|
||||
# Cutting off padded chunks
|
||||
if pad_size > 0:
|
||||
y = y[:, :seq_len, :, :]
|
||||
y = y.reshape(batch_size, seq_len, -1)
|
||||
if ssm_state is not None and cache_params is not None:
|
||||
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
||||
|
||||
scan_output = self.norm(y, gate)
|
||||
|
||||
# end ssd naive
|
||||
|
||||
# 4. Final linear projection
|
||||
contextualized_states = self.out_proj(scan_output) # [batch, seq_len, hidden_size]
|
||||
return contextualized_states
|
||||
|
||||
|
||||
class Mamba2RMSNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
"""
|
||||
Mamba2RMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
|
||||
"""
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states):
|
||||
input_dtype = hidden_states.dtype
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
self.mixer = Mamba2Mixer(config)
|
||||
|
||||
def forward(
|
||||
self, input_ids: LongTensor, h: list[InferenceCache] | list[None] | None = None
|
||||
) -> tuple[LongTensor, list[InferenceCache]]:
|
||||
"""
|
||||
Arguments
|
||||
input_ids: (batch, seqlen) tokens from `EleutherAI/gpt-neox-20b` tokenizer
|
||||
h: hidden states for inference step. If present the constant-time
|
||||
(wrt sequence length) inference path will be taken, input_ids
|
||||
should have shape (batch, 1) containing the next batch of prompt
|
||||
token.
|
||||
|
||||
Return (logits, h)
|
||||
logits: (batch, seqlen, vocab_size)
|
||||
h: updated inference cache after processing `input_ids`
|
||||
"""
|
||||
seqlen = input_ids.shape[1]
|
||||
|
||||
if h is None:
|
||||
h = [None for _ in range(self.args.n_layer)]
|
||||
|
||||
x = self.backbone.embedding(input_ids)
|
||||
for i, layer in enumerate(self.backbone.layers):
|
||||
y, h[i] = layer.mixer(layer.norm(x), h[i])
|
||||
x = y + x
|
||||
|
||||
x = self.backbone.norm_f(x)
|
||||
logits = self.lm_head(x)
|
||||
return logits[:, :seqlen], cast(list[InferenceCache], h)
|
||||
|
||||
def generate(
|
||||
self,
|
||||
input_ids: LongTensor,
|
||||
max_new_length: int = 20,
|
||||
temperature: float = 1.0,
|
||||
top_k: int = 50,
|
||||
top_p: float = 1.0,
|
||||
eos_token_id: int = 0,
|
||||
) -> Iterable[tuple[int, list[InferenceCache]]]:
|
||||
prefix, tokens = input_ids[:-1], input_ids[-1:].unsqueeze(0)
|
||||
hidden_states,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
):
|
||||
x = self.mixer(
|
||||
self.norm(hidden_states), cache_params=cache_params, cache_position=cache_position
|
||||
)
|
||||
return x + hidden_states
|
||||
|
||||
# Process prompt
|
||||
# The input sequence to forward (non-inference path) must have length multiple that of chunk_size.
|
||||
# We split out excess tokens so that n_chunked tokens can be processed by one forward call and
|
||||
# process the rest in multiple inference steps.
|
||||
n_chunked = (prefix.shape[0] // self.args.chunk_size) * self.args.chunk_size
|
||||
if n_chunked > 0:
|
||||
_, h = self(prefix[:n_chunked].unsqueeze(0), None)
|
||||
|
||||
class Mamba2Model(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.layers = nn.ModuleList([Mamba2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
):
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
|
||||
if use_cache:
|
||||
if cache_params is None:
|
||||
cache_params = Mamba2Cache(
|
||||
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
|
||||
)
|
||||
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device)
|
||||
else:
|
||||
h = [
|
||||
InferenceCache.alloc(1, self.args, device=self.device)
|
||||
for _ in range(self.args.n_layer)
|
||||
]
|
||||
for i in range(n_chunked, prefix.shape[0]):
|
||||
_, h = self(prefix[i : i + 1].unsqueeze(0), h)
|
||||
cache_params = None
|
||||
|
||||
# Generate
|
||||
for _ in range(max_new_length):
|
||||
with torch.no_grad():
|
||||
out, h = self(tokens, h)
|
||||
logits = out[0, -1]
|
||||
if temperature != 1.0:
|
||||
logits = logits / temperature
|
||||
if top_k > 0:
|
||||
indices_to_remove = logits < torch.topk(logits, k=top_k)[0][-1]
|
||||
logits[indices_to_remove] = -torch.inf
|
||||
if top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
sorted_indices_to_remove = cum_probs > 0.5
|
||||
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].clone()
|
||||
sorted_indices_to_remove[0] = False
|
||||
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
||||
logits[indices_to_remove] = -torch.inf
|
||||
probs = F.softmax(logits, dim=-1)
|
||||
next_token = torch.multinomial(probs, num_samples=1)
|
||||
if next_token.item() == eos_token_id:
|
||||
return
|
||||
tokens = next_token.unsqueeze(0)
|
||||
yield cast(int, next_token.item()), h
|
||||
hidden_states = inputs_embeds
|
||||
for mixer_block in self.layers:
|
||||
hidden_states = mixer_block(
|
||||
hidden_states,
|
||||
cache_params=cache_params,
|
||||
cache_position=cache_position,
|
||||
)
|
||||
|
||||
if use_cache:
|
||||
cache_params.seqlen_offset += inputs_embeds.shape[1]
|
||||
|
||||
return self.norm_f(hidden_states), cache_params if use_cache else None
|
||||
|
||||
|
||||
class Mamba2(nn.Module):
|
||||
def __init__(self, args: Mamba2Config, device: Device = None):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.device = device
|
||||
|
||||
# Order: (z, x, B, C, dt)
|
||||
d_in_proj = 2 * args.d_inner + 2 * args.d_state + args.nheads
|
||||
self.in_proj = nn.Linear(args.d_model, d_in_proj, bias=False, device=device)
|
||||
class Mamba2ForCausalLM(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.backbone = Mamba2Model(config)
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
conv_dim = args.d_inner + 2 * args.d_state
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=conv_dim,
|
||||
out_channels=conv_dim,
|
||||
kernel_size=args.d_conv,
|
||||
groups=conv_dim,
|
||||
padding=args.d_conv - 1,
|
||||
device=device,
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
cache_position: Optional[torch.Tensor] = None,
|
||||
):
|
||||
mamba2_outputs = self.backbone(
|
||||
input_ids,
|
||||
cache_params=cache_params,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
)
|
||||
hidden_states = mamba2_outputs[0]
|
||||
|
||||
self.dt_bias = nn.Parameter(torch.empty(args.nheads, device=device))
|
||||
self.A_log = nn.Parameter(torch.empty(args.nheads, device=device))
|
||||
self.D = nn.Parameter(torch.empty(args.nheads, device=device))
|
||||
self.norm = RMSNorm(args.d_inner, device=device)
|
||||
self.out_proj = nn.Linear(args.d_inner, args.d_model, bias=False, device=device)
|
||||
|
||||
def forward(self, u: Tensor, h: InferenceCache | None = None):
|
||||
"""
|
||||
Arguments
|
||||
u: (batch, seqlen, d_model) input. seqlen should be a multiple of chunk_size.
|
||||
h: hidden states for inference step. Initialized to 0s if not present.
|
||||
|
||||
Return (y, h)
|
||||
y: (batch, seqlen, d_model) output
|
||||
h: updated inference cache after processing `u`
|
||||
"""
|
||||
if h:
|
||||
return self.step(u, h)
|
||||
|
||||
A = -torch.exp(self.A_log) # (nheads,)
|
||||
zxbcdt = self.in_proj(u) # (batch, seqlen, d_in_proj)
|
||||
z, xBC, dt = torch.split(
|
||||
zxbcdt,
|
||||
[
|
||||
self.args.d_inner,
|
||||
self.args.d_inner + 2 * self.args.d_state,
|
||||
self.args.nheads,
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
dt = F.softplus(dt + self.dt_bias) # (batch, seqlen, nheads)
|
||||
|
||||
# Pad or truncate xBC seqlen to d_conv
|
||||
conv_state = F.pad(
|
||||
rearrange(xBC, "b l d -> b d l"), (self.args.d_conv - u.shape[1], 0)
|
||||
)
|
||||
|
||||
xBC = silu(
|
||||
self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)[:, : u.shape[1], :]
|
||||
) # (batch, seqlen, d_inner + 2 * d_state))
|
||||
x, B, C = torch.split(
|
||||
xBC, [self.args.d_inner, self.args.d_state, self.args.d_state], dim=-1
|
||||
)
|
||||
x = rearrange(x, "b l (h p) -> b l h p", p=self.args.headdim)
|
||||
y, ssm_state = ssd(
|
||||
x * dt.unsqueeze(-1),
|
||||
A * dt,
|
||||
rearrange(B, "b l n -> b l 1 n"),
|
||||
rearrange(C, "b l n -> b l 1 n"),
|
||||
self.args.chunk_size,
|
||||
device=self.device,
|
||||
)
|
||||
y = y + x * self.D.unsqueeze(-1)
|
||||
y = rearrange(y, "b l h p -> b l (h p)")
|
||||
y = self.norm(y, z)
|
||||
y = self.out_proj(y)
|
||||
|
||||
h = InferenceCache(conv_state, ssm_state)
|
||||
return y, h
|
||||
|
||||
def step(self, u: Tensor, h: InferenceCache) -> tuple[Tensor, InferenceCache]:
|
||||
"""Take a single inference step for the current input and hidden state
|
||||
|
||||
Unlike attention-based models, RNN-based models (eg Mamba) does not need
|
||||
to look back at all the past tokens to generate a new token. Instead a
|
||||
hidden state (initialized to 0s initially) is updated for each input and
|
||||
passed to the next inference step. This means that the total inference
|
||||
time is linear with respect to the sequence length instead of quadratic
|
||||
in attention's case.
|
||||
|
||||
Arguments
|
||||
u: (batch, 1, d_model)
|
||||
h: initial/running hidden state
|
||||
|
||||
Return (y, h)
|
||||
y: (batch, 1, d_model)
|
||||
h: updated hidden state
|
||||
"""
|
||||
assert u.shape[1] == 1, "Only one token can be decoded per inference step"
|
||||
|
||||
zxbcdt = self.in_proj(u.squeeze(1)) # (batch, d_in_proj)
|
||||
z, xBC, dt = torch.split(
|
||||
zxbcdt,
|
||||
[
|
||||
self.args.d_inner,
|
||||
self.args.d_inner + 2 * self.args.d_state,
|
||||
self.args.nheads,
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
|
||||
# Advance convolution input
|
||||
h.conv_state.copy_(torch.roll(h.conv_state, shifts=-1, dims=-1))
|
||||
h.conv_state[:, :, -1] = xBC
|
||||
# Convolution step
|
||||
xBC = torch.sum(
|
||||
h.conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1
|
||||
)
|
||||
xBC += self.conv1d.bias
|
||||
xBC = silu(xBC)
|
||||
|
||||
x, B, C = torch.split(
|
||||
xBC, [self.args.d_inner, self.args.d_state, self.args.d_state], dim=-1
|
||||
)
|
||||
A = -torch.exp(self.A_log) # (nheads,)
|
||||
|
||||
# SSM step
|
||||
dt = F.softplus(dt + self.dt_bias) # (batch, nheads)
|
||||
dA = torch.exp(dt * A) # (batch, nheads)
|
||||
x = rearrange(x, "b (h p) -> b h p", p=self.args.headdim)
|
||||
dBx = torch.einsum("bh, bn, bhp -> bhpn", dt, B, x)
|
||||
h.ssm_state.copy_(h.ssm_state * rearrange(dA, "b h -> b h 1 1") + dBx)
|
||||
y = torch.einsum("bhpn, bn -> bhp", h.ssm_state, C)
|
||||
y = y + rearrange(self.D, "h -> h 1") * x
|
||||
y = rearrange(y, "b h p -> b (h p)")
|
||||
y = self.norm(y, z)
|
||||
y = self.out_proj(y)
|
||||
|
||||
return y.unsqueeze(1), h
|
||||
|
||||
|
||||
def segsum(x: Tensor, device: Device = None) -> Tensor:
|
||||
"""Stable segment sum calculation.
|
||||
|
||||
`exp(segsum(A))` produces a 1-semiseparable matrix, which is equivalent to a scalar SSM.
|
||||
|
||||
Source: https://github.com/state-spaces/mamba/blob/219f03c840d5a44e7d42e4e728134834fddccf45/mamba_ssm/modules/ssd_minimal.py#L23-L32
|
||||
"""
|
||||
T = x.size(-1)
|
||||
x = repeat(x, "... d -> ... d e", e=T)
|
||||
mask = torch.tril(torch.ones(T, T, dtype=torch.bool, device=device), diagonal=-1)
|
||||
x = x.masked_fill(~mask, 0)
|
||||
x_segsum = torch.cumsum(x, dim=-2)
|
||||
mask = torch.tril(torch.ones(T, T, dtype=torch.bool, device=device), diagonal=0)
|
||||
x_segsum = x_segsum.masked_fill(~mask, -torch.inf)
|
||||
return x_segsum
|
||||
|
||||
|
||||
def ssd(x, A, B, C, chunk_size, initial_states=None, device: Device = None):
|
||||
"""Structed State Space Duality (SSD) - the core of Mamba-2
|
||||
|
||||
This is almost the exact same minimal SSD code from the blog post.
|
||||
|
||||
Arguments
|
||||
x: (batch, seqlen, n_heads, d_head)
|
||||
A: (batch, seqlen, n_heads)
|
||||
B: (batch, seqlen, n_heads, d_state)
|
||||
C: (batch, seqlen, n_heads, d_state)
|
||||
|
||||
Return
|
||||
y: (batch, seqlen, n_heads, d_head)
|
||||
|
||||
Source
|
||||
1. https://tridao.me/blog/2024/mamba2-part3-algorithm/
|
||||
2. https://github.com/state-spaces/mamba/blob/219f03c840d5a44e7d42e4e728134834fddccf45/mamba_ssm/modules/ssd_minimal.py#L34-L78
|
||||
"""
|
||||
assert x.shape[1] % chunk_size == 0
|
||||
|
||||
# Rearrange into chunks
|
||||
# Step 1, 2 and 4 of SSD can be computed in parallel for each chunk across devices (sequence parallel)
|
||||
# This is not implemented and left as an exercise for the reader 😜
|
||||
x, A, B, C = [
|
||||
rearrange(m, "b (c l) ... -> b c l ...", l=chunk_size) for m in (x, A, B, C)
|
||||
]
|
||||
|
||||
A = rearrange(A, "b c l h -> b h c l")
|
||||
A_cumsum = torch.cumsum(A, dim=-1)
|
||||
|
||||
# 1. Compute the output for each intra-chunk (diagonal blocks)
|
||||
L = torch.exp(segsum(A, device=device))
|
||||
Y_diag = torch.einsum("bclhn, bcshn, bhcls, bcshp -> bclhp", C, B, L, x)
|
||||
|
||||
# 2. Compute the state for each intra-chunk
|
||||
# (right term of low-rank factorization of off-diagonal blocks; B terms)
|
||||
decay_states = torch.exp(A_cumsum[:, :, :, -1:] - A_cumsum)
|
||||
states = torch.einsum("bclhn, bhcl, bclhp -> bchpn", B, decay_states, x)
|
||||
|
||||
# 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
|
||||
# (middle term of factorization of off-diag blocks; A terms)
|
||||
if initial_states is None:
|
||||
initial_states = torch.zeros_like(states[:, :1])
|
||||
states = torch.cat([initial_states, states], dim=1)
|
||||
decay_chunk = torch.exp(segsum(F.pad(A_cumsum[:, :, :, -1], (1, 0)), device=device))
|
||||
new_states = torch.einsum("bhzc, bchpn -> bzhpn", decay_chunk, states)
|
||||
states, final_state = new_states[:, :-1], new_states[:, -1]
|
||||
|
||||
# 4. Compute state -> output conversion per chunk
|
||||
# (left term of low-rank factorization of off-diagonal blocks; C terms)
|
||||
state_decay_out = torch.exp(A_cumsum)
|
||||
Y_off = torch.einsum("bclhn, bchpn, bhcl -> bclhp", C, states, state_decay_out)
|
||||
|
||||
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
|
||||
Y = rearrange(Y_diag + Y_off, "b c l h p -> b (c l) h p")
|
||||
|
||||
return Y, final_state
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, d: int, eps: float = 1e-5, device: Device = None):
|
||||
"""Gated Root Mean Square Layer Normalization
|
||||
|
||||
Paper: https://arxiv.org/abs/1910.07467
|
||||
"""
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.weight = nn.Parameter(torch.ones(d, device=device))
|
||||
|
||||
def forward(self, x, z=None):
|
||||
if z is not None:
|
||||
x = x * silu(z)
|
||||
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
|
||||
|
||||
|
||||
def silu(x):
|
||||
"""Applies the Sigmoid Linear Unit (SiLU), element-wise.
|
||||
|
||||
Define this manually since torch's version doesn't seem to work on MPS.
|
||||
"""
|
||||
return x * F.sigmoid(x)
|
||||
logits = self.lm_head(hidden_states)
|
||||
return logits, mamba2_outputs.cache_params, mamba2_outputs.hidden_states
|
@ -32,259 +32,272 @@ class ModelArgs(BaseModelArgs):
|
||||
rms_norm: bool
|
||||
chunk_size: int
|
||||
tie_word_embeddings: bool
|
||||
intermediate_size: int = None
|
||||
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
||||
time_step_rank: Union[int, str] = "auto"
|
||||
model_type: str = "mamba2"
|
||||
|
||||
def __post_init__(self):
|
||||
if not hasattr(self, "intermediate_size"):
|
||||
self.intermediate_size = int(self.expand * self.hidden_size)
|
||||
self.intermediate_size = int(self.expand * self.hidden_size) # E*D = ED
|
||||
|
||||
if not hasattr(self, "head_dim"):
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
if self.time_step_rank == "auto":
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||
|
||||
|
||||
def selective_scan(x, A, B, C, chunk_size):
|
||||
"""
|
||||
Selective scan implementation for training.
|
||||
|
||||
Arguments
|
||||
x: (batch, seqlen, n_heads, d_head)
|
||||
A: (batch, seqlen, n_heads)
|
||||
B: (batch, seqlen, n_heads, d_state)
|
||||
C: (batch, seqlen, n_heads, d_state)
|
||||
class MambaRMSNormGated(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = mx.ones(hidden_size)
|
||||
self.variance_epsilon = eps
|
||||
|
||||
Return
|
||||
y: (batch, seqlen, n_heads, d_head)
|
||||
"""
|
||||
assert x.shape[1] % chunk_size == 0
|
||||
|
||||
# Reshape into chunks
|
||||
def chunk_reshape(m):
|
||||
shape = list(m.shape)
|
||||
shape[1:2] = [shape[1] // chunk_size, chunk_size]
|
||||
return m.reshape(shape)
|
||||
|
||||
x, A, B, C = map(chunk_reshape, (x, A, B, C))
|
||||
A = mx.transpose(A, [0, 3, 1, 2])
|
||||
|
||||
# Compute cumulative sums
|
||||
A_cumsum = mx.cumsum(A, axis=-1)
|
||||
|
||||
# Process chunks
|
||||
L = mx.exp(selective_cumsum(A))
|
||||
Y_diag = mx.einsum('bclhn,bcshn,bhcls,bcshp->bclhp', C, B, L, x)
|
||||
|
||||
decay_states = mx.exp(A_cumsum[..., -1:] - A_cumsum)
|
||||
states = mx.einsum('bclhn,bhcl,bclhp->bchpn', B, decay_states, x)
|
||||
|
||||
initial_states = mx.zeros_like(states[:, :1])
|
||||
states = mx.concatenate([initial_states, states], axis=1)
|
||||
decay_chunk = mx.exp(selective_cumsum(mx.pad(A_cumsum[..., -1], ((0,0), (0,0), (1,0)))))
|
||||
new_states = mx.einsum('bhzc,bchpn->bzhpn', decay_chunk, states)
|
||||
states = new_states[:, :-1]
|
||||
|
||||
state_decay_out = mx.exp(A_cumsum)
|
||||
Y_off = mx.einsum('bclhn,bchpn,bhcl->bclhp', C, states, state_decay_out)
|
||||
|
||||
Y = (Y_diag + Y_off).reshape((-1, x.shape[1] * chunk_size, *Y_diag.shape[-2:]))
|
||||
return Y
|
||||
def forward(self, hidden_states, gate=None):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(mx.float32)
|
||||
|
||||
def selective_cumsum(x: mx.array) -> mx.array:
|
||||
"""Stable selective cumulative sum calculation."""
|
||||
T = x.shape[-1]
|
||||
x = mx.repeat(x[..., None], T, axis=-1)
|
||||
mask = mx.tril(mx.ones((T, T)), k=-1)
|
||||
x = x * mask
|
||||
x_cumsum = mx.cumsum(x, axis=-2)
|
||||
mask = mx.tril(mx.ones((T, T)), k=0)
|
||||
return mx.where(mask, x_cumsum, float('-inf'))
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.functional.silu(gate.to(mx.float32))
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * math.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states.to(input_dtype)
|
||||
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
class Mamba2Mixer(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
# Model dimensions
|
||||
self.hidden_size = args.hidden_size
|
||||
self.num_heads = args.num_heads
|
||||
self.head_dim = args.head_dim
|
||||
self.ssm_state_size = args.state_size
|
||||
self.n_groups = args.n_groups
|
||||
self.intermediate_size = int(args.expand * args.hidden_size)
|
||||
|
||||
# Internal cache state
|
||||
self.conv_state = None
|
||||
self.ssm_state = None
|
||||
# Convolution parameters
|
||||
self.conv_kernel = args.conv_kernel
|
||||
self.use_conv_bias = args.use_conv_bias
|
||||
|
||||
# Project input to get various components
|
||||
d_in_proj = (2 * args.intermediate_size + 2 * self.args.n_groups * args.state_size + args.num_heads)
|
||||
# Time step parameters
|
||||
self.time_step_rank = int(args.time_step_rank)
|
||||
self.time_step_min = args.time_step_min
|
||||
self.time_step_max = args.time_step_max
|
||||
|
||||
# Processing parameters
|
||||
self.chunk_size = args.chunk_size
|
||||
self.layer_norm_epsilon = args.layer_norm_epsilon
|
||||
|
||||
# Calculate dimensions
|
||||
self.conv_dim = (self.intermediate_size +
|
||||
2 * self.n_groups * self.ssm_state_size)
|
||||
projection_size = (self.intermediate_size +
|
||||
self.conv_dim +
|
||||
self.num_heads)
|
||||
|
||||
# Initialize layers
|
||||
self.in_proj = nn.Linear(
|
||||
args.hidden_size,
|
||||
d_in_proj,
|
||||
self.hidden_size,
|
||||
projection_size,
|
||||
bias=args.use_bias
|
||||
)
|
||||
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=self.conv_dim,
|
||||
out_channels=self.conv_dim,
|
||||
kernel_size=self.conv_kernel,
|
||||
groups=self.conv_dim,
|
||||
padding=self.conv_kernel - 1,
|
||||
bias=self.use_conv_bias
|
||||
)
|
||||
|
||||
# Initialize parameters
|
||||
self.dt_bias = mx.ones(self.num_heads)
|
||||
A = mx.arange(1, self.num_heads + 1)
|
||||
self.A_log = mx.log(A)
|
||||
self.D = mx.ones(self.num_heads)
|
||||
|
||||
# Output layers
|
||||
self.norm = MambaRMSNormGated(
|
||||
self.intermediate_size,
|
||||
eps=self.layer_norm_epsilon
|
||||
)
|
||||
self.out_proj = nn.Linear(
|
||||
self.intermediate_size,
|
||||
self.hidden_size,
|
||||
bias=args.use_bias
|
||||
)
|
||||
|
||||
# Convolution layer
|
||||
conv_dim = args.intermediate_size + 2 * self.args.n_groups * args.state_size
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=conv_dim,
|
||||
out_channels=conv_dim,
|
||||
kernel_size=args.conv_kernel,
|
||||
groups=conv_dim,
|
||||
padding=args.conv_kernel - 1,
|
||||
bias=args.use_conv_bias
|
||||
)
|
||||
|
||||
# SSM parameters
|
||||
dt_init_floor = math.log(args.time_step_floor)
|
||||
self.dt_bias = mx.zeros((args.num_heads,)) * args.initializer_range
|
||||
self.A_log = mx.zeros((args.num_heads,)) * args.initializer_range
|
||||
self.D = mx.zeros((args.num_heads,)) * args.initializer_range
|
||||
|
||||
# Output projections
|
||||
self.norm = nn.RMSNorm(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||||
|
||||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||
return self.forward_training(x) if x.shape[1] > 1 else self.forward_inference(x, cache)
|
||||
|
||||
def forward_training(self, u: mx.array) -> mx.array:
|
||||
# Reset cache during training
|
||||
self.cache = None
|
||||
def reshape_into_chunks(self, tensor, pad_size, chunk_size):
|
||||
if pad_size > 0:
|
||||
pad_shape = list(tensor.shape)
|
||||
pad_shape[1] = pad_size
|
||||
padding = mx.zeros(pad_shape, dtype=tensor.dtype)
|
||||
tensor = mx.concatenate([tensor, padding], axis=1)
|
||||
|
||||
# Input projection and splitting
|
||||
zxbcdt = self.in_proj(u)
|
||||
z, xBC, dt = mx.split(
|
||||
zxbcdt,
|
||||
[
|
||||
self.args.intermediate_size,
|
||||
self.args.intermediate_size + 2 * self.args.state_size
|
||||
],
|
||||
axis=-1
|
||||
)
|
||||
chunk_shape = list(tensor.shape)
|
||||
chunk_shape[1] = -1
|
||||
chunk_shape.insert(2, chunk_size)
|
||||
return tensor.reshape(chunk_shape)
|
||||
|
||||
# Time step processing
|
||||
def segment_sum(self, x):
|
||||
return mx.cumsum(x, axis=-1)
|
||||
|
||||
def process_single_token(self, hidden_states, B, C, dt, cache):
|
||||
batch_size = hidden_states.shape[0]
|
||||
|
||||
# Process convolution state
|
||||
if cache is not None:
|
||||
conv_state = cache.conv_states
|
||||
# Roll the conv state and update the last position
|
||||
conv_state = mx.roll(conv_state, shift=-1, axis=-1)
|
||||
# Create new conv state with updated last position
|
||||
new_conv_state = mx.array(conv_state)
|
||||
new_conv_state = new_conv_state.at[:, :, -1].add(hidden_states)
|
||||
conv_state = new_conv_state
|
||||
|
||||
# Compute convolution
|
||||
conv_out = mx.sum(conv_state * self.conv1d.weight[:, 0, :], axis=-1)
|
||||
if self.use_conv_bias:
|
||||
conv_out = conv_out + self.conv1d.bias
|
||||
|
||||
# Apply SiLU activation
|
||||
conv_out = mx.sigmoid(conv_out) * conv_out
|
||||
|
||||
else:
|
||||
# Initialize new cache
|
||||
conv_state = mx.zeros((batch_size, self.conv_dim, self.conv_kernel - 1))
|
||||
conv_out = self.conv1d(hidden_states)
|
||||
conv_out = mx.sigmoid(conv_out) * conv_out
|
||||
|
||||
# Process SSM
|
||||
dt = mx.clip(
|
||||
nn.softplus(dt + self.dt_bias),
|
||||
self.args.time_step_min,
|
||||
self.args.time_step_max
|
||||
self.time_step_min,
|
||||
self.time_step_max
|
||||
)
|
||||
|
||||
# Convolution processing
|
||||
xBC_t = mx.transpose(xBC, [0, 2, 1])
|
||||
conv_out = self.conv1d(xBC_t)
|
||||
xBC = mx.transpose(conv_out, [0, 2, 1])[:, :u.shape[1]]
|
||||
xBC = mx.sigmoid(xBC) * xBC # SiLU
|
||||
|
||||
# Split states
|
||||
x, B, C = mx.split(
|
||||
xBC,
|
||||
[self.args.intermediate_size, self.args.state_size],
|
||||
axis=-1
|
||||
)
|
||||
|
||||
# Reshape for selective scan
|
||||
x = x.reshape((-1, x.shape[1], self.args.num_heads, self.args.head_dim))
|
||||
|
||||
A = -mx.exp(self.A_log)
|
||||
dA = mx.exp(dt * A[None, :])
|
||||
|
||||
if cache is not None:
|
||||
ssm_state = cache.ssm_states
|
||||
else:
|
||||
ssm_state = mx.zeros(
|
||||
(batch_size, self.num_heads, self.head_dim, self.ssm_state_size)
|
||||
)
|
||||
|
||||
# Compute SSM updates
|
||||
dBx = mx.einsum('bh,bhs,bhd->bhds', dt, B, hidden_states)
|
||||
next_state = ssm_state * dA[:, :, None, None] + dBx
|
||||
y = mx.einsum('bhds,bhs->bhd', next_state, C)
|
||||
|
||||
# Add skip connection
|
||||
y = y + hidden_states * self.D[None, :, None]
|
||||
|
||||
return y, conv_state, next_state
|
||||
|
||||
# Apply selective scan
|
||||
y = selective_scan(
|
||||
x * dt[..., None],
|
||||
A * dt,
|
||||
B[..., None, :],
|
||||
C[..., None, :],
|
||||
self.args.chunk_size
|
||||
def process_long_sequence(self, hidden_states, B, C, dt, ssm_state):
|
||||
batch_size, seq_len = hidden_states.shape[:2]
|
||||
pad_size = self.chunk_size - (seq_len % self.chunk_size)
|
||||
|
||||
# Reshape into chunks
|
||||
x_chunks = self.reshape_into_chunks(hidden_states, pad_size, self.chunk_size)
|
||||
B_chunks = self.reshape_into_chunks(B, pad_size, self.chunk_size)
|
||||
C_chunks = self.reshape_into_chunks(C, pad_size, self.chunk_size)
|
||||
|
||||
# Process time steps
|
||||
dt = nn.softplus(dt + self.dt_bias)
|
||||
dt = mx.clip(dt, self.time_step_min)
|
||||
|
||||
# Prepare matrices
|
||||
A = -mx.exp(self.A_log)
|
||||
A = A * dt[:, None]
|
||||
|
||||
# Process chunks
|
||||
A_chunks = self.reshape_into_chunks(
|
||||
mx.broadcast_to(A, (batch_size, seq_len + pad_size, self.num_heads)),
|
||||
pad_size,
|
||||
self.chunk_size
|
||||
)
|
||||
|
||||
# Output processing
|
||||
y = y + x * self.D[None, None, :, None]
|
||||
y = y.reshape((-1, y.shape[1], self.args.intermediate_size))
|
||||
y = self.norm(y, z)
|
||||
y = self.out_proj(y)
|
||||
|
||||
return y
|
||||
|
||||
def forward_inference(self, u: mx.array, cache=None) -> mx.array:
|
||||
"""Single token processing during inference."""
|
||||
assert u.shape[1] == 1, "Inference mode expects single token"
|
||||
# Compute cumulative sums
|
||||
A_cumsum = mx.cumsum(A_chunks, axis=-1)
|
||||
L = mx.exp(self.segment_sum(A_chunks))
|
||||
|
||||
batch_size = u.shape[0]
|
||||
# Use provided cache or create new one
|
||||
self.cache = cache if cache is not None else Mamba2Cache.get_cache(self.args, batch_size, None)
|
||||
# Process diagonal blocks
|
||||
G = mx.einsum('...lhn,...shn->...lsh', C_chunks, B_chunks)
|
||||
M = G * L[..., None, :]
|
||||
Y_diag = mx.einsum('...lsh,...sh->...lh', M, x_chunks)
|
||||
|
||||
# Process off-diagonal blocks
|
||||
decay_states = mx.exp(A_cumsum[..., -1:] - A_cumsum)
|
||||
B_decay = B_chunks * decay_states[..., None]
|
||||
states = mx.einsum('...shn,...sh->...hn', B_decay, x_chunks)
|
||||
|
||||
# Combine results
|
||||
y = Y_diag + states
|
||||
|
||||
# Remove padding if necessary
|
||||
if pad_size > 0:
|
||||
y = y[:, :seq_len]
|
||||
|
||||
return y, ssm_state
|
||||
|
||||
def __call__(self, x: mx.array, cache: Optional[Mamba2Cache] = None) -> mx.array:
|
||||
batch_size, seq_len, _ = x.shape
|
||||
|
||||
# Project input
|
||||
zxbcdt = self.in_proj(mx.squeeze(u, 1))
|
||||
parts = mx.split(
|
||||
zxbcdt,
|
||||
[
|
||||
self.args.intermediate_size,
|
||||
self.args.intermediate_size + 2 * self.args.state_size
|
||||
],
|
||||
axis=-1
|
||||
)
|
||||
z, xBC = parts[0], parts[1]
|
||||
dt = zxbcdt[:, -self.args.num_heads:] # Extract dt separately
|
||||
|
||||
# Update convolution state and apply
|
||||
conv_state = self.cache.update_conv_state(xBC)
|
||||
xBC = mx.sum(
|
||||
conv_state * mx.transpose(self.conv1d.weight, [1, 0, 2]),
|
||||
axis=-1
|
||||
)
|
||||
if self.args.use_conv_bias:
|
||||
xBC = xBC + self.conv1d.bias
|
||||
xBC = mx.sigmoid(xBC) * xBC # SiLU
|
||||
|
||||
# Split states and ensure proper shapes
|
||||
x_splits = mx.split(
|
||||
xBC,
|
||||
[self.args.intermediate_size, self.args.state_size],
|
||||
axis=-1
|
||||
)
|
||||
x, B, C = x_splits[0], x_splits[1], x_splits[2]
|
||||
projected_states = self.in_proj(x.squeeze(1))
|
||||
|
||||
# Process time steps - ensure proper broadcasting
|
||||
dt = mx.reshape(dt, (batch_size, self.args.num_heads))
|
||||
dt = mx.clip(
|
||||
nn.softplus(dt + self.dt_bias[None, :]),
|
||||
self.args.time_step_min,
|
||||
self.args.time_step_max
|
||||
)
|
||||
# Calculate d_mlp based on projection size
|
||||
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 *
|
||||
self.n_groups * self.ssm_state_size - self.num_heads) // 2
|
||||
|
||||
# SSM step with explicit shapes
|
||||
A = -mx.exp(self.A_log)
|
||||
dA = mx.exp(dt * A[None, :]) # Shape: (batch_size, num_heads)
|
||||
# Split projections with corrected dimensions
|
||||
splits = [
|
||||
d_mlp, # z0
|
||||
d_mlp, # x0
|
||||
self.intermediate_size, # gate
|
||||
self.conv_dim, # hidden_states
|
||||
self.num_heads # dt
|
||||
]
|
||||
|
||||
# Reshape x considering intermediate size
|
||||
# x shape should be (batch_size * num_heads, head_dim)
|
||||
x = mx.reshape(x, (batch_size, self.args.num_heads, -1))
|
||||
assert x.shape[-1] == self.args.head_dim, f"Head dimension mismatch: {x.shape[-1]} vs {self.args.head_dim}"
|
||||
z0, x0, x1, gate, hidden_states, dt = projected_states.split(splits, axis=-1)
|
||||
|
||||
# Reshape B and C for ssm computation
|
||||
B = mx.reshape(B, (batch_size, -1)) # Should be (batch_size, state_size)
|
||||
C = mx.reshape(C, (batch_size, -1)) # Should be (batch_size, state_size)
|
||||
# Split hidden states into components
|
||||
x_conv, BC = mx.split(hidden_states, [self.intermediate_size], axis=-1)
|
||||
B, C = mx.split(BC, [self.n_groups * self.ssm_state_size], axis=-1)
|
||||
|
||||
# Compute dBx with explicit shapes
|
||||
dBx = mx.einsum('bh,bs,bhd->bhds', dt, B, x)
|
||||
# Process based on sequence length
|
||||
if seq_len > 1 and cache is None:
|
||||
y, next_state = self.process_long_sequence(
|
||||
x_conv, B, C, dt,
|
||||
mx.zeros((batch_size, self.num_heads, self.head_dim, self.ssm_state_size))
|
||||
)
|
||||
else:
|
||||
# Reshape for single token processing
|
||||
x_conv = x_conv.reshape(batch_size, -1, self.head_dim)
|
||||
B = B.reshape(batch_size, self.num_heads, -1)
|
||||
C = C.reshape(batch_size, self.num_heads, -1)
|
||||
y, conv_state, next_state = self.process_single_token(x_conv, B, C, dt, cache)
|
||||
|
||||
if cache is not None:
|
||||
cache.update(conv_state, next_state)
|
||||
|
||||
ssm_state = self.cache.update_ssm_state(dA, dBx)
|
||||
|
||||
y = mx.einsum('bhds,bs->bhd', ssm_state, C)
|
||||
y = y + x * self.D[None, :, None]
|
||||
y = mx.reshape(y, (batch_size, self.args.intermediate_size))
|
||||
|
||||
# Output processing
|
||||
y = self.norm(y, z)
|
||||
y = self.out_proj(y)
|
||||
|
||||
return mx.expand_dims(y, 1)
|
||||
|
||||
# Apply normalization and final projection
|
||||
y = self.norm(y) * gate
|
||||
return self.out_proj(y)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.mixer = Mamba2Block(args)
|
||||
self.mixer = Mamba2Mixer(args)
|
||||
self.norm = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||
def __call__(self, x: mx.array, cache: Optional[Mamba2Cache] = None) -> mx.array:
|
||||
return self.mixer(self.norm(x), cache) + x
|
||||
|
||||
|
||||
class Mamba2Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
@ -295,19 +308,20 @@ class Mamba2Model(nn.Module):
|
||||
|
||||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||
x = self.embeddings(x)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for layer, layer_cache in zip(self.layers, cache):
|
||||
x = layer(x, layer_cache)
|
||||
return self.norm_f(x)
|
||||
|
||||
return self.norm_f(x)
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.backbone = Mamba2Model(args)
|
||||
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
@ -324,17 +338,24 @@ class Model(nn.Module):
|
||||
return logits
|
||||
|
||||
def make_cache(self, batch_size=1):
|
||||
return [Mamba2Cache(
|
||||
batch_size=batch_size,
|
||||
intermediate_size=self.args.intermediate_size,
|
||||
state_size=self.args.state_size,
|
||||
conv_kernel=self.args.conv_kernel,
|
||||
num_heads=self.args.num_heads,
|
||||
head_dim=self.args.head_dim
|
||||
) for _ in range(len(self.backbone.layers))]
|
||||
return [
|
||||
Mamba2Cache(
|
||||
batch_size=batch_size,
|
||||
conv_dim=self.args.intermediate_size + 2 * self.args.n_groups * self.args.state_size,
|
||||
kernel_size=self.args.conv_kernel,
|
||||
num_heads=self.args.num_heads,
|
||||
head_dim=self.args.head_dim,
|
||||
state_size=self.args.state_size
|
||||
)
|
||||
for _ in range(len(self.backbone.layers))
|
||||
]
|
||||
|
||||
def sanitize(self, weights):
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k and v.ndim == 3:
|
||||
weights[k] = v.moveaxis(2, 1)
|
||||
return weights
|
||||
return weights
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.backbone.layers
|
||||
|
Loading…
Reference in New Issue
Block a user