mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-12-16 02:08:55 +08:00
top_p refactor
This commit is contained in:
@@ -8,31 +8,42 @@ class TestSampleUtils(unittest.TestCase):
|
||||
def test_top_p_sampling(self):
|
||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||
logits = mx.log(probs)
|
||||
temperature = 1.0
|
||||
|
||||
token = top_p_sampling(logits, 0.3, temperature).item()
|
||||
self.assertEqual(token, 0)
|
||||
actual_logits = top_p_sampling(logits, 0.3)
|
||||
actual_probs = mx.softmax(actual_logits.squeeze())
|
||||
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
||||
|
||||
token = top_p_sampling(logits, 0.95, temperature).item()
|
||||
self.assertTrue(token in (0, 3))
|
||||
actual_logits = top_p_sampling(logits, 0.95)
|
||||
actual_probs = mx.softmax(actual_logits.squeeze())
|
||||
self.assertEqual(probs.squeeze().tolist(), actual_probs.tolist())
|
||||
|
||||
probs = mx.array([0.0, 0.5, 0.4, 0.1])[None]
|
||||
logits = mx.log(probs)
|
||||
actual_logits = top_p_sampling(logits, 0.4)
|
||||
actual_probs = mx.softmax(actual_logits.squeeze())
|
||||
self.assertEqual(actual_probs.tolist(), [0.0, 1.0, 0.0, 0.0])
|
||||
|
||||
token = top_p_sampling(logits, 0.4, temperature).item()
|
||||
self.assertEqual(token, 1)
|
||||
actual_logits = top_p_sampling(logits, 0.6)
|
||||
actual_probs = mx.softmax(actual_logits.squeeze())
|
||||
self.assertEqual(
|
||||
[round(p, 4) for p in actual_probs.tolist()], [0.0, 0.5556, 0.4444, 0.0]
|
||||
)
|
||||
|
||||
token = top_p_sampling(logits, 0.6, temperature).item()
|
||||
self.assertTrue(token in (1, 2))
|
||||
|
||||
token = top_p_sampling(logits, 0.95, temperature).item()
|
||||
self.assertTrue(token in (1, 2, 3))
|
||||
actual_logits = top_p_sampling(logits, 0.95)
|
||||
actual_probs = mx.softmax(actual_logits.squeeze())
|
||||
actual_rounded = [round(p, 4) for p in actual_probs.tolist()]
|
||||
expected_rounded = [0.0, 0.5, 0.4, 0.1]
|
||||
self.assertEqual(actual_rounded, expected_rounded)
|
||||
self.assertAlmostEqual(sum(actual_probs.tolist()), 1.0)
|
||||
|
||||
# Batch mode works
|
||||
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
||||
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.1, 0.1]])
|
||||
logits = mx.log(probs)
|
||||
tokens = top_p_sampling(logits, 0.5, temperature)
|
||||
self.assertEqual(tokens.tolist(), [0, 1])
|
||||
actual_logits = top_p_sampling(logits, 0.5)
|
||||
actual_probs = mx.softmax(actual_logits, axis=-1)
|
||||
self.assertEqual(
|
||||
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
||||
)
|
||||
|
||||
def test_min_p_sampling(self):
|
||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||
|
||||
Reference in New Issue
Block a user