fix test + faster min p + test

This commit is contained in:
Awni Hannun 2024-11-23 11:03:00 -08:00
parent f82e49aad9
commit 5a3f01b081
3 changed files with 29 additions and 14 deletions

View File

@ -1,5 +1,6 @@
# Copyright © 2023-2024 Apple Inc.
import math
from functools import partial
from typing import Callable, Dict, Optional
@ -80,7 +81,7 @@ def make_logits_processors(
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
def min_p_sampling(
logits: mx.array,
logprobs: mx.array,
min_p: float,
min_tokens_to_keep: int = 1,
temperature=1.0,
@ -93,7 +94,7 @@ def min_p_sampling(
aggressive given a very high-probability token.
Args:
logits: The logits from the model's output.
logprobs: A vector of log probabilities.
min_p (float): Minimum token probability. Typical values are in the
0.01-0.2 range, comparably selective as setting `top_p` in the
0.99-0.8 range.
@ -111,28 +112,27 @@ def min_p_sampling(
)
# reference implementation: https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L531-L605
# Softmax probabilities
probs = mx.softmax(logits * (1 / temperature), axis=-1)
logprobs = logprobs * (1 / temperature)
# Indices sorted in decreasing order
sorted_indices = mx.argsort(-logits).squeeze(0)
sorted_probs = probs[..., sorted_indices]
sorted_indices = mx.argsort(-logprobs).squeeze(0)
sorted_logprobs = logprobs[..., sorted_indices]
# Top probability
top_probs = probs[..., sorted_indices[0]]
top_logprobs = logprobs[..., sorted_indices[0]]
# Calculate the min_p threshold
scaled_min_p = min_p * top_probs
scaled_min_p = top_logprobs + math.log(min_p)
# Mask tokens that have a probability less than the scaled min_p
tokens_to_remove = sorted_probs < scaled_min_p
tokens_to_remove = sorted_logprobs < scaled_min_p
tokens_to_remove[..., :min_tokens_to_keep] = False
# Create pool of tokens with probability less than scaled min_p
selected_probs = mx.where(tokens_to_remove, 0, sorted_probs)
selected_logprobs = mx.where(tokens_to_remove, -float("inf"), sorted_logprobs)
# Return sampled token
sorted_token = mx.random.categorical(mx.log(selected_probs))
sorted_token = mx.random.categorical(selected_logprobs)
return sorted_indices[sorted_token]

View File

@ -2,6 +2,7 @@
import unittest
from mlx_lm.sample_utils import make_logits_processors
from mlx_lm.utils import generate, load
@ -25,8 +26,8 @@ class TestGenerate(unittest.TestCase):
self.tokenizer,
"hello",
max_tokens=5,
logits_processors=make_logits_processors(logit_bias),
verbose=False,
logit_bias=logit_bias,
)
self.assertEqual(text, "!!!!!")

View File

@ -1,10 +1,10 @@
import unittest
import mlx.core as mx
from mlx_lm.sample_utils import top_p_sampling
from mlx_lm.sample_utils import min_p_sampling, top_p_sampling
class TestSamplingUtils(unittest.TestCase):
class TestSampleUtils(unittest.TestCase):
def test_top_p_sampling(self):
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
logits = mx.log(probs)
@ -28,6 +28,20 @@ class TestSamplingUtils(unittest.TestCase):
token = top_p_sampling(logits, 0.95, temperature).item()
self.assertTrue(token in (1, 2, 3))
def test_min_p_sampling(self):
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
logits = mx.log(probs)
temperature = 1.0
token = min_p_sampling(logits, 0.8)
self.assertEqual(token, 0)
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
logits = mx.log(probs)
temperature = 1.0
for _ in range(5):
token = min_p_sampling(logits, 0.05)
self.assertTrue(token in (0, 3))
if __name__ == "__main__":
unittest.main()