mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-31 11:54:37 +08:00
fix test + faster min p + test
This commit is contained in:
parent
f82e49aad9
commit
5a3f01b081
@ -1,5 +1,6 @@
|
|||||||
# Copyright © 2023-2024 Apple Inc.
|
# Copyright © 2023-2024 Apple Inc.
|
||||||
|
|
||||||
|
import math
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from typing import Callable, Dict, Optional
|
from typing import Callable, Dict, Optional
|
||||||
|
|
||||||
@ -80,7 +81,7 @@ def make_logits_processors(
|
|||||||
|
|
||||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||||
def min_p_sampling(
|
def min_p_sampling(
|
||||||
logits: mx.array,
|
logprobs: mx.array,
|
||||||
min_p: float,
|
min_p: float,
|
||||||
min_tokens_to_keep: int = 1,
|
min_tokens_to_keep: int = 1,
|
||||||
temperature=1.0,
|
temperature=1.0,
|
||||||
@ -93,7 +94,7 @@ def min_p_sampling(
|
|||||||
aggressive given a very high-probability token.
|
aggressive given a very high-probability token.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
logits: The logits from the model's output.
|
logprobs: A vector of log probabilities.
|
||||||
min_p (float): Minimum token probability. Typical values are in the
|
min_p (float): Minimum token probability. Typical values are in the
|
||||||
0.01-0.2 range, comparably selective as setting `top_p` in the
|
0.01-0.2 range, comparably selective as setting `top_p` in the
|
||||||
0.99-0.8 range.
|
0.99-0.8 range.
|
||||||
@ -111,28 +112,27 @@ def min_p_sampling(
|
|||||||
)
|
)
|
||||||
# reference implementation: https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L531-L605
|
# reference implementation: https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L531-L605
|
||||||
|
|
||||||
# Softmax probabilities
|
logprobs = logprobs * (1 / temperature)
|
||||||
probs = mx.softmax(logits * (1 / temperature), axis=-1)
|
|
||||||
|
|
||||||
# Indices sorted in decreasing order
|
# Indices sorted in decreasing order
|
||||||
sorted_indices = mx.argsort(-logits).squeeze(0)
|
sorted_indices = mx.argsort(-logprobs).squeeze(0)
|
||||||
sorted_probs = probs[..., sorted_indices]
|
sorted_logprobs = logprobs[..., sorted_indices]
|
||||||
|
|
||||||
# Top probability
|
# Top probability
|
||||||
top_probs = probs[..., sorted_indices[0]]
|
top_logprobs = logprobs[..., sorted_indices[0]]
|
||||||
|
|
||||||
# Calculate the min_p threshold
|
# Calculate the min_p threshold
|
||||||
scaled_min_p = min_p * top_probs
|
scaled_min_p = top_logprobs + math.log(min_p)
|
||||||
|
|
||||||
# Mask tokens that have a probability less than the scaled min_p
|
# Mask tokens that have a probability less than the scaled min_p
|
||||||
tokens_to_remove = sorted_probs < scaled_min_p
|
tokens_to_remove = sorted_logprobs < scaled_min_p
|
||||||
tokens_to_remove[..., :min_tokens_to_keep] = False
|
tokens_to_remove[..., :min_tokens_to_keep] = False
|
||||||
|
|
||||||
# Create pool of tokens with probability less than scaled min_p
|
# Create pool of tokens with probability less than scaled min_p
|
||||||
selected_probs = mx.where(tokens_to_remove, 0, sorted_probs)
|
selected_logprobs = mx.where(tokens_to_remove, -float("inf"), sorted_logprobs)
|
||||||
|
|
||||||
# Return sampled token
|
# Return sampled token
|
||||||
sorted_token = mx.random.categorical(mx.log(selected_probs))
|
sorted_token = mx.random.categorical(selected_logprobs)
|
||||||
return sorted_indices[sorted_token]
|
return sorted_indices[sorted_token]
|
||||||
|
|
||||||
|
|
||||||
|
@ -2,6 +2,7 @@
|
|||||||
|
|
||||||
import unittest
|
import unittest
|
||||||
|
|
||||||
|
from mlx_lm.sample_utils import make_logits_processors
|
||||||
from mlx_lm.utils import generate, load
|
from mlx_lm.utils import generate, load
|
||||||
|
|
||||||
|
|
||||||
@ -25,8 +26,8 @@ class TestGenerate(unittest.TestCase):
|
|||||||
self.tokenizer,
|
self.tokenizer,
|
||||||
"hello",
|
"hello",
|
||||||
max_tokens=5,
|
max_tokens=5,
|
||||||
|
logits_processors=make_logits_processors(logit_bias),
|
||||||
verbose=False,
|
verbose=False,
|
||||||
logit_bias=logit_bias,
|
|
||||||
)
|
)
|
||||||
self.assertEqual(text, "!!!!!")
|
self.assertEqual(text, "!!!!!")
|
||||||
|
|
||||||
|
@ -1,10 +1,10 @@
|
|||||||
import unittest
|
import unittest
|
||||||
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
from mlx_lm.sample_utils import top_p_sampling
|
from mlx_lm.sample_utils import min_p_sampling, top_p_sampling
|
||||||
|
|
||||||
|
|
||||||
class TestSamplingUtils(unittest.TestCase):
|
class TestSampleUtils(unittest.TestCase):
|
||||||
def test_top_p_sampling(self):
|
def test_top_p_sampling(self):
|
||||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
@ -28,6 +28,20 @@ class TestSamplingUtils(unittest.TestCase):
|
|||||||
token = top_p_sampling(logits, 0.95, temperature).item()
|
token = top_p_sampling(logits, 0.95, temperature).item()
|
||||||
self.assertTrue(token in (1, 2, 3))
|
self.assertTrue(token in (1, 2, 3))
|
||||||
|
|
||||||
|
def test_min_p_sampling(self):
|
||||||
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||||
|
logits = mx.log(probs)
|
||||||
|
temperature = 1.0
|
||||||
|
token = min_p_sampling(logits, 0.8)
|
||||||
|
self.assertEqual(token, 0)
|
||||||
|
|
||||||
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||||
|
logits = mx.log(probs)
|
||||||
|
temperature = 1.0
|
||||||
|
for _ in range(5):
|
||||||
|
token = min_p_sampling(logits, 0.05)
|
||||||
|
self.assertTrue(token in (0, 3))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
unittest.main()
|
unittest.main()
|
||||||
|
Loading…
Reference in New Issue
Block a user