getting reall closer:

python -m mlx_lm.generate --model /Users/gokdenizgulmez/Desktop/Mamba-Codestral-7B-v0.1-4bit --prompt "# A function that computes fibonacci
def fibonacci(" -m 64
==========
n):
    print(f"{os.path.abspath(".")/data/data/data/com.android.launcher.png)

## 🙌🏼 🙌🙌🙌🙌🙌🙌

class _State(Enum):
    def __init__ (self
==========
Prompt: 16 tokens, 84.547 tokens-per-sec
Generation: 64 tokens, 13.774 tokens-per-sec
Peak memory: 4.139 GB
This commit is contained in:
Goekdeniz-Guelmez 2025-01-21 20:44:51 +01:00
parent eb432f4b7d
commit 5a6ada2df0

View File

@ -33,8 +33,7 @@ class ModelArgs(BaseModelArgs):
time_step_min: float
time_step_max: float
time_step_floor: float
A_init_min: float = 1.0
A_init_max: float = 16.0
norm_before_gate: bool = True
def __post_init__(self):
if not hasattr(self, "intermediate_size"):
@ -46,17 +45,29 @@ class ModelArgs(BaseModelArgs):
class MambaRMSNormGated(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
def __init__(self, hidden_size, eps=1e-6, norm_before_gate=False):
super().__init__()
self.weight = mx.ones((hidden_size,))
self.variance_epsilon = eps
def __call__(self, hidden_states, gate=None):
if gate is not None:
hidden_states = hidden_states * nn.silu(gate)
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states
self.norm_before_gate = norm_before_gate
def rms_norm(self, x):
variance = mx.mean(x ** 2, axis=-1, keepdims=True)
x = x * mx.rsqrt(variance + self.variance_epsilon)
return self.weight * x
def __call__(self, x, z=None):
if z is None:
return self.rms_norm(x)
if self.norm_before_gate:
x = self.rms_norm(x)
x = x * nn.silu(z)
else:
x = x * nn.silu(z)
x = self.rms_norm(x)
return x
def silu(x):
@ -86,12 +97,71 @@ class DepthWiseConv1d(nn.Module):
return y, x[:, -K + 1:, :]
def ssd_forward_attn(
x: mx.array,
dt: mx.array,
A: mx.array,
B: mx.array,
C: mx.array,
D: mx.array,
dt_bias: mx.array,
dt_min: float,
dt_max: float,
) -> Tuple[mx.array, mx.array]:
b, l, h, dh = x.shape
_, _, g, _ = B.shape
if dt_bias is not None:
dt = dt + dt_bias.reshape(1, 1, -1)
dt = nn.softplus(dt)
dt = mx.clip(dt, a_min=dt_min, a_max=dt_max)
B = mx.swapaxes(mx.swapaxes(B, 1, 3), 1, 2)
C = mx.swapaxes(C, 1, 2)
CB = C @ B
CB = mx.repeat(CB, repeats=h // g, axis=1)
dtA = dt * A.reshape(1, 1, -1)
dtA = mx.swapaxes(dtA, 1, 2)
decay = mx.exp(segsum(dtA))
surrogate_attention_matrix = mx.tril(CB * decay, 0)
dtx = dt.reshape(b, l, h, 1) * x
y = surrogate_attention_matrix @ dtx.swapaxes(1, 2)
y = mx.swapaxes(y, 1, 2)
decay = decay[:, :, -1, :].reshape(b, h, l).swapaxes(1, 2).reshape(b, l, h, 1)
B = mx.repeat(B, h // g, axis=1).swapaxes(2, 3)
dtxdecay = dtx * decay
dtxdecay = dtxdecay.swapaxes(1, 2).swapaxes(2, 3)
next_state = dtxdecay @ B
if D is not None:
y += x * D.reshape(1, 1, h, 1)
y = y.reshape(b, l, h * dh)
return y, next_state
def segsum(x):
l = x.shape[-1]
x = mx.repeat(x[..., None], l, axis=-1)
x = mx.tril(x, -1)
x_segsum = mx.cumsum(x, axis=-2)
return x_segsum
class Mamba2Block(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
# Same dimensions as before
# Dimensions
self.d_model = args.hidden_size
self.d_state = args.state_size
self.d_conv = args.conv_kernel
@ -106,14 +176,12 @@ class Mamba2Block(nn.Module):
d_in_proj = 2 * self.d_inner + 2 * self.n_groups * self.d_state + self.n_heads
self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=args.use_bias)
# Parameters
self.dt_bias = mx.random.normal((self.n_heads,)) * args.initializer_range
self.A_log = mx.random.normal((self.n_heads,)) * args.initializer_range
self.D = mx.random.normal((self.n_heads,)) * args.initializer_range
# Same D initialization
self.D = mx.random.normal((self.n_heads,)) * args.initializer_range
# Convolution with proper initialization
# Convolution
self.conv1d = DepthWiseConv1d(
channels=self.d_inner + 2 * self.n_groups * self.d_state,
kernel_size=self.d_conv,
@ -122,7 +190,11 @@ class Mamba2Block(nn.Module):
)
# Output projections
self.norm = MambaRMSNormGated(self.d_inner, eps=args.layer_norm_epsilon)
self.norm = MambaRMSNormGated(
self.d_inner,
eps=args.layer_norm_epsilon,
norm_before_gate=args.norm_before_gate
)
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=args.use_bias)
def __call__(self, u: mx.array, cache=None):
@ -131,103 +203,59 @@ class Mamba2Block(nn.Module):
cache = [None, None]
# Project input
zxbcdt = self.in_proj(u) # (B, L, d_in_proj)
A = -mx.exp(self.A_log) # (nheads) or (d_inner, d_state)
zxBCdt = self.in_proj(u)
# Split projections
z, xBC, dt = mx.split(
zxbcdt,
indices_or_sections=[
self.d_inner,
self.d_inner + (2 * self.n_groups * self.d_state + self.d_inner)
],
zxBCdt,
[self.d_inner, 2 * self.d_inner + 2 * self.n_groups * self.d_state],
axis=-1
)
# Process dt
dt = nn.softplus(dt + self.dt_bias) # (B, L, nheads)
# Conv1d and activation
xBC, conv_state = self.conv1d(xBC, cache[0] if cache else None)
# Process convolution
xBC, conv_state = self.conv1d(xBC, cache[0])
xBC = silu(xBC)
if cache is not None:
cache[0] = conv_state
xBC = xBC[:, :seq_len, :]
# Split conv output and reshape
# Split and reshape conv output
x, B, C = mx.split(
xBC,
indices_or_sections=[
self.d_inner,
self.d_inner + self.n_groups * self.d_state
],
xBC,
[self.d_inner, self.d_inner + self.d_state * self.n_groups],
axis=-1
)
# Reshape tensors
# Reshape for SSM processing
x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head))
B = mx.reshape(B, (batch_size, seq_len, self.n_groups, -1))
C = mx.reshape(C, (batch_size, seq_len, self.n_groups, -1))
x = mx.reshape(x, (batch_size, seq_len, self.n_heads, -1))
# Initialize state
if cache and cache[1] is not None:
prev_state = cache[1]
else:
prev_state = mx.zeros((batch_size, self.n_heads, self.d_head, self.d_state))
# Get parameters for attention computation
A = -mx.exp(self.A_log)
# Compute dA
dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads))
dA = mx.exp(dt * mx.expand_dims(A, axis=(0, 1)))
# Compute parallel attention
y, next_state = ssd_forward_attn(
x=x,
dt=dt,
A=A,
B=B,
C=C,
D=self.D,
dt_bias=self.dt_bias,
dt_min=self.args.time_step_min,
dt_max=self.args.time_step_max,
)
# Process sequence in chunks
chunk_size = self.chunk_size
outputs = []
next_state = prev_state
# Process in chunks
for chunk_start in range(0, seq_len, chunk_size):
chunk_end = min(chunk_start + chunk_size, seq_len)
# Get current chunk
x_chunk = x[:, chunk_start:chunk_end]
B_chunk = B[:, chunk_start:chunk_end]
C_chunk = C[:, chunk_start:chunk_end]
dA_chunk = dA[:, chunk_start:chunk_end]
z_chunk = z[:, chunk_start:chunk_end]
# Process the chunk in batches
chunk_outputs = []
chunk_state = next_state
for t in range(chunk_end - chunk_start):
xt = x_chunk[:, t]
Bt = B_chunk[:, t]
Ct = C_chunk[:, t]
dAt = dA_chunk[:, t]
# Update state
dBx = mx.einsum('bh,bgd,bhp->bhpd', dAt, Bt, xt)
chunk_state = chunk_state * mx.expand_dims(dAt, axis=(-1, -2)) + dBx
# Compute output
yt = mx.einsum('bhpd,bgd->bhp', chunk_state, Ct)
yt = yt + xt * mx.expand_dims(self.D, -1)
# Reshape and normalize
yt = mx.reshape(yt, (batch_size, 1, self.d_inner))
yt = self.norm(yt, z_chunk[:, t:t+1])
chunk_outputs.append(self.out_proj(yt))
# Update state for next chunk
next_state = chunk_state
outputs.extend(chunk_outputs)
# Update cache with final state
# Update cache
if cache is not None:
cache[1] = next_state
# Apply normalization and output projection
y = self.norm(y, z)
y = self.out_proj(y)
return mx.concatenate(outputs, axis=1)
return y
class ResidualBlock(nn.Module):
@ -238,8 +266,8 @@ class ResidualBlock(nn.Module):
self.norm = nn.RMSNorm(args.hidden_size)
def __call__(self, x: mx.array, cache):
if self.residual_in_fp32:
x = x.astype(mx.float32)
# if self.residual_in_fp32:
# x = x.astype(mx.float32)
normed = self.norm(x)
output = self.mixer(normed, cache)
return output + x