mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-11 03:36:42 +08:00
getting reall closer:
python -m mlx_lm.generate --model /Users/gokdenizgulmez/Desktop/Mamba-Codestral-7B-v0.1-4bit --prompt "# A function that computes fibonacci def fibonacci(" -m 64 ========== n): print(f"{os.path.abspath(".")/data/data/data/com.android.launcher.png) ## 🙌🏼 🙌🙌🙌🙌🙌🙌 class _State(Enum): def __init__ (self ========== Prompt: 16 tokens, 84.547 tokens-per-sec Generation: 64 tokens, 13.774 tokens-per-sec Peak memory: 4.139 GB
This commit is contained in:
parent
eb432f4b7d
commit
5a6ada2df0
@ -33,8 +33,7 @@ class ModelArgs(BaseModelArgs):
|
||||
time_step_min: float
|
||||
time_step_max: float
|
||||
time_step_floor: float
|
||||
A_init_min: float = 1.0
|
||||
A_init_max: float = 16.0
|
||||
norm_before_gate: bool = True
|
||||
|
||||
def __post_init__(self):
|
||||
if not hasattr(self, "intermediate_size"):
|
||||
@ -46,17 +45,29 @@ class ModelArgs(BaseModelArgs):
|
||||
|
||||
|
||||
class MambaRMSNormGated(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
def __init__(self, hidden_size, eps=1e-6, norm_before_gate=False):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((hidden_size,))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def __call__(self, hidden_states, gate=None):
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.silu(gate)
|
||||
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
||||
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states
|
||||
self.norm_before_gate = norm_before_gate
|
||||
|
||||
def rms_norm(self, x):
|
||||
variance = mx.mean(x ** 2, axis=-1, keepdims=True)
|
||||
x = x * mx.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * x
|
||||
|
||||
def __call__(self, x, z=None):
|
||||
if z is None:
|
||||
return self.rms_norm(x)
|
||||
|
||||
if self.norm_before_gate:
|
||||
x = self.rms_norm(x)
|
||||
x = x * nn.silu(z)
|
||||
else:
|
||||
x = x * nn.silu(z)
|
||||
x = self.rms_norm(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def silu(x):
|
||||
@ -86,12 +97,71 @@ class DepthWiseConv1d(nn.Module):
|
||||
return y, x[:, -K + 1:, :]
|
||||
|
||||
|
||||
def ssd_forward_attn(
|
||||
x: mx.array,
|
||||
dt: mx.array,
|
||||
A: mx.array,
|
||||
B: mx.array,
|
||||
C: mx.array,
|
||||
D: mx.array,
|
||||
dt_bias: mx.array,
|
||||
dt_min: float,
|
||||
dt_max: float,
|
||||
) -> Tuple[mx.array, mx.array]:
|
||||
b, l, h, dh = x.shape
|
||||
_, _, g, _ = B.shape
|
||||
|
||||
if dt_bias is not None:
|
||||
dt = dt + dt_bias.reshape(1, 1, -1)
|
||||
|
||||
dt = nn.softplus(dt)
|
||||
dt = mx.clip(dt, a_min=dt_min, a_max=dt_max)
|
||||
|
||||
B = mx.swapaxes(mx.swapaxes(B, 1, 3), 1, 2)
|
||||
C = mx.swapaxes(C, 1, 2)
|
||||
|
||||
CB = C @ B
|
||||
CB = mx.repeat(CB, repeats=h // g, axis=1)
|
||||
|
||||
dtA = dt * A.reshape(1, 1, -1)
|
||||
dtA = mx.swapaxes(dtA, 1, 2)
|
||||
|
||||
decay = mx.exp(segsum(dtA))
|
||||
|
||||
surrogate_attention_matrix = mx.tril(CB * decay, 0)
|
||||
|
||||
dtx = dt.reshape(b, l, h, 1) * x
|
||||
y = surrogate_attention_matrix @ dtx.swapaxes(1, 2)
|
||||
y = mx.swapaxes(y, 1, 2)
|
||||
|
||||
decay = decay[:, :, -1, :].reshape(b, h, l).swapaxes(1, 2).reshape(b, l, h, 1)
|
||||
B = mx.repeat(B, h // g, axis=1).swapaxes(2, 3)
|
||||
dtxdecay = dtx * decay
|
||||
dtxdecay = dtxdecay.swapaxes(1, 2).swapaxes(2, 3)
|
||||
next_state = dtxdecay @ B
|
||||
|
||||
if D is not None:
|
||||
y += x * D.reshape(1, 1, h, 1)
|
||||
|
||||
y = y.reshape(b, l, h * dh)
|
||||
|
||||
return y, next_state
|
||||
|
||||
|
||||
def segsum(x):
|
||||
l = x.shape[-1]
|
||||
x = mx.repeat(x[..., None], l, axis=-1)
|
||||
x = mx.tril(x, -1)
|
||||
x_segsum = mx.cumsum(x, axis=-2)
|
||||
return x_segsum
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
# Same dimensions as before
|
||||
# Dimensions
|
||||
self.d_model = args.hidden_size
|
||||
self.d_state = args.state_size
|
||||
self.d_conv = args.conv_kernel
|
||||
@ -106,14 +176,12 @@ class Mamba2Block(nn.Module):
|
||||
d_in_proj = 2 * self.d_inner + 2 * self.n_groups * self.d_state + self.n_heads
|
||||
self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=args.use_bias)
|
||||
|
||||
# Parameters
|
||||
self.dt_bias = mx.random.normal((self.n_heads,)) * args.initializer_range
|
||||
self.A_log = mx.random.normal((self.n_heads,)) * args.initializer_range
|
||||
self.D = mx.random.normal((self.n_heads,)) * args.initializer_range
|
||||
|
||||
# Same D initialization
|
||||
self.D = mx.random.normal((self.n_heads,)) * args.initializer_range
|
||||
|
||||
# Convolution with proper initialization
|
||||
# Convolution
|
||||
self.conv1d = DepthWiseConv1d(
|
||||
channels=self.d_inner + 2 * self.n_groups * self.d_state,
|
||||
kernel_size=self.d_conv,
|
||||
@ -122,7 +190,11 @@ class Mamba2Block(nn.Module):
|
||||
)
|
||||
|
||||
# Output projections
|
||||
self.norm = MambaRMSNormGated(self.d_inner, eps=args.layer_norm_epsilon)
|
||||
self.norm = MambaRMSNormGated(
|
||||
self.d_inner,
|
||||
eps=args.layer_norm_epsilon,
|
||||
norm_before_gate=args.norm_before_gate
|
||||
)
|
||||
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=args.use_bias)
|
||||
|
||||
def __call__(self, u: mx.array, cache=None):
|
||||
@ -131,103 +203,59 @@ class Mamba2Block(nn.Module):
|
||||
cache = [None, None]
|
||||
|
||||
# Project input
|
||||
zxbcdt = self.in_proj(u) # (B, L, d_in_proj)
|
||||
A = -mx.exp(self.A_log) # (nheads) or (d_inner, d_state)
|
||||
|
||||
zxBCdt = self.in_proj(u)
|
||||
|
||||
# Split projections
|
||||
z, xBC, dt = mx.split(
|
||||
zxbcdt,
|
||||
indices_or_sections=[
|
||||
self.d_inner,
|
||||
self.d_inner + (2 * self.n_groups * self.d_state + self.d_inner)
|
||||
],
|
||||
zxBCdt,
|
||||
[self.d_inner, 2 * self.d_inner + 2 * self.n_groups * self.d_state],
|
||||
axis=-1
|
||||
)
|
||||
|
||||
# Process dt
|
||||
dt = nn.softplus(dt + self.dt_bias) # (B, L, nheads)
|
||||
|
||||
# Conv1d and activation
|
||||
xBC, conv_state = self.conv1d(xBC, cache[0] if cache else None)
|
||||
# Process convolution
|
||||
xBC, conv_state = self.conv1d(xBC, cache[0])
|
||||
xBC = silu(xBC)
|
||||
|
||||
if cache is not None:
|
||||
cache[0] = conv_state
|
||||
|
||||
xBC = xBC[:, :seq_len, :]
|
||||
|
||||
# Split conv output and reshape
|
||||
# Split and reshape conv output
|
||||
x, B, C = mx.split(
|
||||
xBC,
|
||||
indices_or_sections=[
|
||||
self.d_inner,
|
||||
self.d_inner + self.n_groups * self.d_state
|
||||
],
|
||||
xBC,
|
||||
[self.d_inner, self.d_inner + self.d_state * self.n_groups],
|
||||
axis=-1
|
||||
)
|
||||
|
||||
# Reshape tensors
|
||||
# Reshape for SSM processing
|
||||
x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head))
|
||||
B = mx.reshape(B, (batch_size, seq_len, self.n_groups, -1))
|
||||
C = mx.reshape(C, (batch_size, seq_len, self.n_groups, -1))
|
||||
x = mx.reshape(x, (batch_size, seq_len, self.n_heads, -1))
|
||||
|
||||
# Initialize state
|
||||
if cache and cache[1] is not None:
|
||||
prev_state = cache[1]
|
||||
else:
|
||||
prev_state = mx.zeros((batch_size, self.n_heads, self.d_head, self.d_state))
|
||||
# Get parameters for attention computation
|
||||
A = -mx.exp(self.A_log)
|
||||
|
||||
# Compute dA
|
||||
dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads))
|
||||
dA = mx.exp(dt * mx.expand_dims(A, axis=(0, 1)))
|
||||
# Compute parallel attention
|
||||
y, next_state = ssd_forward_attn(
|
||||
x=x,
|
||||
dt=dt,
|
||||
A=A,
|
||||
B=B,
|
||||
C=C,
|
||||
D=self.D,
|
||||
dt_bias=self.dt_bias,
|
||||
dt_min=self.args.time_step_min,
|
||||
dt_max=self.args.time_step_max,
|
||||
)
|
||||
|
||||
# Process sequence in chunks
|
||||
chunk_size = self.chunk_size
|
||||
outputs = []
|
||||
next_state = prev_state
|
||||
|
||||
# Process in chunks
|
||||
for chunk_start in range(0, seq_len, chunk_size):
|
||||
chunk_end = min(chunk_start + chunk_size, seq_len)
|
||||
|
||||
# Get current chunk
|
||||
x_chunk = x[:, chunk_start:chunk_end]
|
||||
B_chunk = B[:, chunk_start:chunk_end]
|
||||
C_chunk = C[:, chunk_start:chunk_end]
|
||||
dA_chunk = dA[:, chunk_start:chunk_end]
|
||||
z_chunk = z[:, chunk_start:chunk_end]
|
||||
|
||||
# Process the chunk in batches
|
||||
chunk_outputs = []
|
||||
chunk_state = next_state
|
||||
|
||||
for t in range(chunk_end - chunk_start):
|
||||
xt = x_chunk[:, t]
|
||||
Bt = B_chunk[:, t]
|
||||
Ct = C_chunk[:, t]
|
||||
dAt = dA_chunk[:, t]
|
||||
|
||||
# Update state
|
||||
dBx = mx.einsum('bh,bgd,bhp->bhpd', dAt, Bt, xt)
|
||||
chunk_state = chunk_state * mx.expand_dims(dAt, axis=(-1, -2)) + dBx
|
||||
|
||||
# Compute output
|
||||
yt = mx.einsum('bhpd,bgd->bhp', chunk_state, Ct)
|
||||
yt = yt + xt * mx.expand_dims(self.D, -1)
|
||||
|
||||
# Reshape and normalize
|
||||
yt = mx.reshape(yt, (batch_size, 1, self.d_inner))
|
||||
yt = self.norm(yt, z_chunk[:, t:t+1])
|
||||
chunk_outputs.append(self.out_proj(yt))
|
||||
|
||||
# Update state for next chunk
|
||||
next_state = chunk_state
|
||||
outputs.extend(chunk_outputs)
|
||||
|
||||
# Update cache with final state
|
||||
# Update cache
|
||||
if cache is not None:
|
||||
cache[1] = next_state
|
||||
|
||||
# Apply normalization and output projection
|
||||
y = self.norm(y, z)
|
||||
y = self.out_proj(y)
|
||||
|
||||
return mx.concatenate(outputs, axis=1)
|
||||
return y
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
@ -238,8 +266,8 @@ class ResidualBlock(nn.Module):
|
||||
self.norm = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
if self.residual_in_fp32:
|
||||
x = x.astype(mx.float32)
|
||||
# if self.residual_in_fp32:
|
||||
# x = x.astype(mx.float32)
|
||||
normed = self.norm(x)
|
||||
output = self.mixer(normed, cache)
|
||||
return output + x
|
||||
|
Loading…
Reference in New Issue
Block a user