mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-28 13:00:00 +08:00
Merge branch 'ml-explore:main' into add_modelscope
This commit is contained in:
commit
5c472e7721
@ -32,7 +32,7 @@ jobs:
|
||||
pip install --upgrade pip
|
||||
pip install unittest-xml-reporting
|
||||
cd llms/
|
||||
pip install -e ".[testing]"
|
||||
pip install -e ".[test]"
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
|
@ -77,15 +77,19 @@ class MLXLM(LM):
|
||||
path_or_hf_repo: str,
|
||||
batch_size: int = 16,
|
||||
max_tokens: Optional[int] = None,
|
||||
use_chat_template: Optional[bool] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self._batch_size = batch_size
|
||||
self._model, self._tokenizer = load(path_or_hf_repo)
|
||||
self._max_tokens = max_tokens or self._tokenizer.model_max_length
|
||||
self._model, self.tokenizer = load(path_or_hf_repo)
|
||||
self._max_tokens = max_tokens or self.tokenizer.model_max_length
|
||||
self.use_chat_template = use_chat_template or (
|
||||
self.tokenizer.chat_template is not None
|
||||
)
|
||||
|
||||
def _score_fn(self, inputs, tokenize=True, step_size=32):
|
||||
if tokenize:
|
||||
inputs = self._tokenizer.encode(inputs)
|
||||
inputs = self._tokenize(inputs)
|
||||
inputs = _pad_inputs(inputs, self._max_tokens, truncate=False)
|
||||
inputs = mx.array(inputs)
|
||||
inputs, targets = inputs[..., :-1], inputs[..., 1:]
|
||||
@ -149,7 +153,12 @@ class MLXLM(LM):
|
||||
return results
|
||||
|
||||
def _tokenize(self, texts):
|
||||
return [tuple(self._tokenizer.encode(t)) for t in texts]
|
||||
return [
|
||||
tuple(
|
||||
self.tokenizer.encode(t, add_special_tokens=not self.use_chat_template)
|
||||
)
|
||||
for t in texts
|
||||
]
|
||||
|
||||
def loglikelihood(self, requests) -> list[tuple[float, bool]]:
|
||||
"""Compute log-likelihood of generating a continuation from a context.
|
||||
@ -221,6 +230,9 @@ class MLXLM(LM):
|
||||
)
|
||||
return [(r[0], r[1] == r[2]) for r in results]
|
||||
|
||||
tokenizer_name = lm_eval.models.huggingface.HFLM.tokenizer_name
|
||||
apply_chat_template = lm_eval.models.huggingface.HFLM.apply_chat_template
|
||||
|
||||
def loglikelihood_rolling(self, requests) -> list[float]:
|
||||
"""Compute full log-likelihood of a string, with no truncation, for perplexity computation
|
||||
- We will use the full max context length of the model.
|
||||
@ -283,21 +295,14 @@ class MLXLM(LM):
|
||||
completions = []
|
||||
|
||||
for context, until in tqdm(zip(contexts, untils), total=len(contexts)):
|
||||
if self._tokenizer.chat_template is not None:
|
||||
messages = [{"role": "user", "content": context}]
|
||||
context = self._tokenizer.apply_chat_template(
|
||||
messages, add_generation_prompt=True
|
||||
)
|
||||
else:
|
||||
context = self._tokenizer.encode(context)
|
||||
|
||||
context = self._tokenize(context)
|
||||
max_tokens = min(
|
||||
self._max_tokens,
|
||||
self._tokenizer.model_max_length - len(context),
|
||||
self.tokenizer.model_max_length - len(context),
|
||||
)
|
||||
text = ""
|
||||
for response in stream_generate(
|
||||
self._model, self._tokenizer, prompt=context, max_tokens=max_tokens
|
||||
self._model, self.tokenizer, prompt=context, max_tokens=max_tokens
|
||||
):
|
||||
text += response.text
|
||||
if any(u in text for u in until):
|
||||
@ -332,6 +337,21 @@ def main():
|
||||
type=float,
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=123, help="Random seed.")
|
||||
parser.add_argument(
|
||||
"--fewshot-as-multiturn",
|
||||
action="store_true",
|
||||
help="Whether to provide the fewshot examples as a multiturn "
|
||||
"conversation or a single user turn.",
|
||||
default=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--apply-chat-template",
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Specifies whether to apply a chat template to the prompt. If "
|
||||
"the model has a chat template, this defaults to `True`, "
|
||||
"otherwise `False`.",
|
||||
default=None,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
output_dir = Path(args.output_dir)
|
||||
@ -342,18 +362,23 @@ def main():
|
||||
|
||||
mx.random.seed(args.seed)
|
||||
|
||||
lm = MLXLM(args.model, batch_size=args.batch_size, max_tokens=args.max_tokens)
|
||||
|
||||
lm = MLXLM(
|
||||
args.model,
|
||||
batch_size=args.batch_size,
|
||||
max_tokens=args.max_tokens,
|
||||
use_chat_template=args.apply_chat_template,
|
||||
)
|
||||
results = lm_eval.simple_evaluate(
|
||||
model=lm,
|
||||
tasks=args.tasks,
|
||||
fewshot_as_multiturn=args.fewshot_as_multiturn,
|
||||
apply_chat_template=lm.use_chat_template,
|
||||
num_fewshot=args.num_shots,
|
||||
limit=args.limit,
|
||||
random_seed=args.seed,
|
||||
numpy_random_seed=args.seed,
|
||||
torch_random_seed=args.seed,
|
||||
fewshot_random_seed=args.seed,
|
||||
apply_chat_template=True,
|
||||
)
|
||||
|
||||
model_name = args.model.replace("/", "_")
|
||||
|
@ -43,10 +43,11 @@ def setup_arg_parser():
|
||||
help="Optional path for the trained adapter weights and config.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--eos-token",
|
||||
"--extra-eos-token",
|
||||
type=str,
|
||||
default=None,
|
||||
help="End of sequence token for tokenizer",
|
||||
default=(),
|
||||
nargs="+",
|
||||
help="Add tokens in the list of eos tokens that stop generation.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--system-prompt",
|
||||
@ -161,8 +162,6 @@ def main():
|
||||
{} if not using_cache else json.loads(metadata["tokenizer_config"])
|
||||
)
|
||||
tokenizer_config["trust_remote_code"] = True
|
||||
if args.eos_token is not None:
|
||||
tokenizer_config["eos_token"] = args.eos_token
|
||||
|
||||
model_path = args.model
|
||||
if using_cache:
|
||||
@ -181,6 +180,8 @@ def main():
|
||||
adapter_path=args.adapter_path,
|
||||
tokenizer_config=tokenizer_config,
|
||||
)
|
||||
for eos_token in args.extra_eos_token:
|
||||
tokenizer.add_eos_token(eos_token)
|
||||
|
||||
if args.use_default_chat_template:
|
||||
if tokenizer.chat_template is None:
|
||||
|
@ -266,6 +266,18 @@ class TokenizerWrapper:
|
||||
else {tokenizer.eos_token_id}
|
||||
)
|
||||
|
||||
def add_eos_token(self, token: str):
|
||||
token_id = None
|
||||
try:
|
||||
token_id = int(token)
|
||||
except ValueError:
|
||||
token_id = self._tokenizer.convert_tokens_to_ids(token)
|
||||
|
||||
if token_id is None:
|
||||
raise ValueError(f"'{token}' is not a token for this tokenizer")
|
||||
|
||||
self._eos_token_ids.add(token_id)
|
||||
|
||||
def __getattr__(self, attr):
|
||||
if attr == "detokenizer":
|
||||
return self._detokenizer
|
||||
|
@ -697,12 +697,10 @@ def upload_to_hub(path: str, upload_repo: str, hf_path: str):
|
||||
|
||||
api = HfApi()
|
||||
api.create_repo(repo_id=upload_repo, exist_ok=True)
|
||||
api.upload_folder(
|
||||
api.upload_large_folder(
|
||||
folder_path=path,
|
||||
repo_id=upload_repo,
|
||||
repo_type="model",
|
||||
multi_commits=True,
|
||||
multi_commits_verbose=True,
|
||||
)
|
||||
print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")
|
||||
|
||||
|
@ -27,8 +27,8 @@ setup(
|
||||
packages=["mlx_lm", "mlx_lm.models", "mlx_lm.tuner"],
|
||||
python_requires=">=3.8",
|
||||
extras_require={
|
||||
"testing": ["datasets"],
|
||||
"evaluation": ["lm-eval"],
|
||||
"test": ["datasets"],
|
||||
"evaluate": ["lm-eval", "tqdm"],
|
||||
},
|
||||
entry_points={
|
||||
"console_scripts": [
|
||||
|
Loading…
Reference in New Issue
Block a user