Updating BERT model to take advantage of bias param in MultiHeadAttention

This commit is contained in:
Joe Barrow 2023-12-09 12:07:33 -05:00
parent 46c6bbe0a1
commit 5d4838b02e

View File

@ -7,7 +7,6 @@ import mlx.core as mx
import mlx.nn as nn
import argparse
import numpy
import math
@dataclass
@ -34,74 +33,6 @@ model_configs = {
}
class MultiHeadAttention(nn.Module):
"""
Minor update to the MultiHeadAttention module to ensure that the
projections use bias.
"""
def __init__(
self,
dims: int,
num_heads: int,
query_input_dims: Optional[int] = None,
key_input_dims: Optional[int] = None,
value_input_dims: Optional[int] = None,
value_dims: Optional[int] = None,
value_output_dims: Optional[int] = None,
):
super().__init__()
if (dims % num_heads) != 0:
raise ValueError(
f"The input feature dimensions should be divisible by the number of heads ({dims} % {num_heads}) != 0"
)
query_input_dims = query_input_dims or dims
key_input_dims = key_input_dims or dims
value_input_dims = value_input_dims or key_input_dims
value_dims = value_dims or dims
value_output_dims = value_output_dims or dims
self.num_heads = num_heads
self.query_proj = nn.Linear(query_input_dims, dims, True)
self.key_proj = nn.Linear(key_input_dims, dims, True)
self.value_proj = nn.Linear(value_input_dims, value_dims, True)
self.out_proj = nn.Linear(value_dims, value_output_dims, True)
def __call__(self, queries, keys, values, mask=None):
queries = self.query_proj(queries)
keys = self.key_proj(keys)
values = self.value_proj(values)
num_heads = self.num_heads
B, L, D = queries.shape
_, S, _ = keys.shape
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 3, 1)
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
# Dimensions are [batch x num heads x sequence x hidden dim]
scale = math.sqrt(1 / queries.shape[-1])
scores = (queries * scale) @ keys
if mask is not None:
mask = self.convert_mask_to_additive_causal_mask(mask)
mask = mx.expand_dims(mask, (1, 2))
mask = mx.broadcast_to(mask, scores.shape)
scores = scores + mask.astype(scores.dtype)
scores = mx.softmax(scores, axis=-1)
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.out_proj(values_hat)
def convert_mask_to_additive_causal_mask(
self, mask: mx.array, dtype: mx.Dtype = mx.float32
) -> mx.array:
mask = mask == 0
mask = mask.astype(dtype) * -1e9
return mask
class TransformerEncoderLayer(nn.Module):
"""
A transformer encoder layer with (the original BERT) post-normalization.
@ -116,7 +47,7 @@ class TransformerEncoderLayer(nn.Module):
):
super().__init__()
mlp_dims = mlp_dims or dims * 4
self.attention = MultiHeadAttention(dims, num_heads)
self.attention = nn.MultiHeadAttention(dims, num_heads, bias=True)
self.ln1 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.ln2 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.linear1 = nn.Linear(dims, mlp_dims)
@ -186,13 +117,28 @@ class Bert(nn.Module):
self,
input_ids: mx.array,
token_type_ids: mx.array,
attention_mask: Optional[mx.array] = None,
attention_mask: mx.array = None,
) -> tuple[mx.array, mx.array]:
x = self.embeddings(input_ids, token_type_ids)
if attention_mask is not None:
# convert 0's to -infs, 1's to 0's, and make it broadcastable
attention_mask = self.convert_mask_to_additive_causal_mask(attention_mask)
attention_mask = mx.expand_dims(attention_mask, (1, 2))
y = self.encoder(x, attention_mask)
return y, mx.tanh(self.pooler(y[:, 0]))
def convert_mask_to_additive_causal_mask(
self, mask: mx.array, dtype: mx.Dtype = mx.float32
) -> mx.array:
mask = mask == 0
mask = mask.astype(dtype) * -1e9
return mask
def load_model(bert_model: str, weights_path: str) -> tuple[Bert, BertTokenizer]:
# load the weights npz
weights = mx.load(weights_path)