mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
lora
This commit is contained in:
parent
4950e9f374
commit
5d6353aab7
91
lora/README.md
Normal file
91
lora/README.md
Normal file
@ -0,0 +1,91 @@
|
||||
# LoRA
|
||||
|
||||
This is an example of using MLX to fine-tune a Llama 7B[^llama] model with low
|
||||
rank adaptation (LoRA)[^lora] for a target task.
|
||||
|
||||
In this example we'll use the WikiSQL[^wikisql] dataset to train the LLM to
|
||||
generate SQL queries from natural language. However, the example is intended to
|
||||
be general should you wish to modify the task.
|
||||
|
||||
## Setup
|
||||
|
||||
Install the dependencies:
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Next, download and convert the model. If you do not have access to the model
|
||||
weights you will need to [request
|
||||
access](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform)
|
||||
from Meta.
|
||||
|
||||
Convert the weights with:
|
||||
|
||||
```
|
||||
python convert.py <path_to_torch_weights> mlx_llama_7B.npz
|
||||
```
|
||||
|
||||
## Run
|
||||
|
||||
The main script is `lora.py`. To see a full list of options run
|
||||
|
||||
```
|
||||
python lora.py --help
|
||||
```
|
||||
|
||||
To fine-tune a model use:
|
||||
|
||||
```
|
||||
python lora.py --model mlx_llama_7B.npz \
|
||||
--tokenizer tokenizer.model \
|
||||
--train \
|
||||
--iters 600 \
|
||||
```
|
||||
|
||||
By default, the adapter weights are saved in `adapters.npz`. You can specify
|
||||
the output location with `--adapter_file`.
|
||||
|
||||
To compute test set perplexity use
|
||||
|
||||
```
|
||||
python lora.py --model mlx_llama_7B.npz \
|
||||
--tokenizer tokenizer.model \
|
||||
--data data \
|
||||
--test
|
||||
```
|
||||
|
||||
For generation use
|
||||
|
||||
```
|
||||
python lora.py --model mlx_llama_7B.npz \
|
||||
--tokenizer tokenizer.model \
|
||||
--num-tokens 50 \
|
||||
--prompt "table: 1-10015132-16
|
||||
columns: Player, No., Nationality, Position, Years in Toronto, School/Club Team
|
||||
Q: What is terrence ross' nationality
|
||||
A: "
|
||||
```
|
||||
|
||||
## Results
|
||||
|
||||
The initial validation loss for Llama 7B on the WikiSQL is 2.66 and the final
|
||||
validation loss after 1000 iterations is 1.23. The table below shows the
|
||||
training and validation loss at a few points over the course of training.
|
||||
|
||||
| Iteration | Train Loss | Validation Loss |
|
||||
| --------- | ---------- | --------------- |
|
||||
| 1 | N/A | 2.659 |
|
||||
| 200 | 1.264 | 1.405 |
|
||||
| 400 | 1.201 | 1.303 |
|
||||
| 600 | 1.123 | 1.274 |
|
||||
| 800 | 1.017 | 1.255 |
|
||||
| 1000 | 1.070 | 1.230 |
|
||||
|
||||
After training for 1000 iterations, the validation perplexity reduces to XX.
|
||||
|
||||
The model trains at around 475 tokens per second on an M2 Ultra.
|
||||
|
||||
[^lora]: Refer to the [arXiv paper](https://arxiv.org/abs/2106.09685) for more details on LoRA.
|
||||
[^llama]: Refer to the [arXiv paper](https://arxiv.org/abs/2302.13971) and [blog post](https://ai.meta.com/blog/large-language-model-llama-meta-ai/) for more details.
|
||||
[^wikisql]: Refer to the [GitHub repo](https://github.com/salesforce/WikiSQL/tree/master) for more information about WikiSQL.
|
46
lora/convert.py
Normal file
46
lora/convert.py
Normal file
@ -0,0 +1,46 @@
|
||||
import argparse
|
||||
from itertools import starmap
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
def map_torch_to_mlx(key, value):
|
||||
if "tok_embedding" in key:
|
||||
key = "embedding.weight"
|
||||
|
||||
elif "norm" in key:
|
||||
key = key.replace("attention_norm", "norm1").replace("ffn_norm", "norm2")
|
||||
|
||||
elif "wq" in key or "wk" in key or "wv" in key or "wo" in key:
|
||||
key = key.replace("wq", "query_proj")
|
||||
key = key.replace("wk", "key_proj")
|
||||
key = key.replace("wv", "value_proj")
|
||||
key = key.replace("wo", "out_proj")
|
||||
|
||||
elif "w1" in key or "w2" in key or "w3" in key:
|
||||
# The FFN is a separate submodule in PyTorch
|
||||
key = key.replace("feed_forward.w1", "linear1")
|
||||
key = key.replace("feed_forward.w3", "linear2")
|
||||
key = key.replace("feed_forward.w2", "linear3")
|
||||
|
||||
elif "output" in key:
|
||||
key = key.replace("output", "out_proj")
|
||||
|
||||
elif "rope" in key:
|
||||
return None, None
|
||||
|
||||
return key, value.numpy()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Convert Llama weights to MLX")
|
||||
parser.add_argument("torch_weights")
|
||||
parser.add_argument("output_file")
|
||||
args = parser.parse_args()
|
||||
|
||||
state = torch.load(args.torch_weights)
|
||||
np.savez(
|
||||
args.output_file,
|
||||
**{k: v for k, v in starmap(map_torch_to_mlx, state.items()) if k is not None}
|
||||
)
|
197
lora/llama.py
Normal file
197
lora/llama.py
Normal file
@ -0,0 +1,197 @@
|
||||
import math
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from mlx.utils import tree_unflatten
|
||||
|
||||
|
||||
class LoRALinear(nn.Module):
|
||||
@staticmethod
|
||||
def from_linear(linear: nn.Linear, rank: int = 8):
|
||||
input_dims, output_dims = linear.weight.shape
|
||||
lora_lin = LoRALinear(input_dims, output_dims, rank)
|
||||
lora_lin.linear = linear
|
||||
return lora_lin
|
||||
|
||||
def __init__(
|
||||
self, input_dims: int, output_dims: int, lora_rank: int = 8, bias: bool = False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Regular linear layer weights
|
||||
self.linear = nn.Linear(input_dims, output_dims, bias=bias)
|
||||
|
||||
# Low rank lora weights
|
||||
scale = 1 / math.sqrt(input_dims)
|
||||
self.lora_a = mx.random.uniform(
|
||||
low=-scale,
|
||||
high=scale,
|
||||
shape=(input_dims, lora_rank),
|
||||
)
|
||||
self.lora_b = mx.zeros(shape=(lora_rank, output_dims))
|
||||
|
||||
def __call__(self, x):
|
||||
y = self.linear(x)
|
||||
z = (x @ self.lora_a) @ self.lora_b
|
||||
return y + 2.0 * z
|
||||
|
||||
|
||||
class LlamaAttention(nn.Module):
|
||||
def __init__(self, dims: int, num_heads: int):
|
||||
super().__init__()
|
||||
|
||||
self.num_heads = num_heads
|
||||
|
||||
self.rope = nn.RoPE(dims // num_heads, traditional=True)
|
||||
|
||||
self.query_proj = nn.Linear(dims, dims, bias=False)
|
||||
self.key_proj = nn.Linear(dims, dims, bias=False)
|
||||
self.value_proj = nn.Linear(dims, dims, bias=False)
|
||||
self.out_proj = nn.Linear(dims, dims, bias=False)
|
||||
|
||||
def __call__(self, queries, keys, values, mask=None, cache=None):
|
||||
queries = self.query_proj(queries)
|
||||
keys = self.key_proj(keys)
|
||||
values = self.value_proj(values)
|
||||
|
||||
# Extract some shapes
|
||||
num_heads = self.num_heads
|
||||
B, L, D = queries.shape
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
# Add RoPE to the queries and keys and combine them with the cache
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||
values = mx.concatenate([value_cache, values], axis=2)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
# Finally perform the attention computation
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
|
||||
if mask is not None:
|
||||
scores = scores + mask
|
||||
scores = mx.softmax(scores, axis=-1)
|
||||
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
||||
# Note that we return the keys and values to possibly be used as a cache
|
||||
return self.out_proj(values_hat), (keys, values)
|
||||
|
||||
|
||||
class LlamaEncoderLayer(nn.Module):
|
||||
def __init__(self, dims: int, mlp_dims: int, num_heads: int):
|
||||
super().__init__()
|
||||
|
||||
self.attention = LlamaAttention(dims, num_heads)
|
||||
|
||||
self.norm1 = nn.RMSNorm(dims)
|
||||
self.norm2 = nn.RMSNorm(dims)
|
||||
|
||||
self.linear1 = nn.Linear(dims, mlp_dims, bias=False)
|
||||
self.linear2 = nn.Linear(dims, mlp_dims, bias=False)
|
||||
self.linear3 = nn.Linear(mlp_dims, dims, bias=False)
|
||||
|
||||
def __call__(self, x, mask=None, cache=None):
|
||||
y = self.norm1(x)
|
||||
y, cache = self.attention(y, y, y, mask, cache)
|
||||
x = x + y
|
||||
|
||||
y = self.norm2(x)
|
||||
a = self.linear1(y)
|
||||
b = self.linear2(y)
|
||||
y = a * mx.sigmoid(a) * b
|
||||
y = self.linear3(y)
|
||||
x = x + y
|
||||
|
||||
return x, cache
|
||||
|
||||
|
||||
class Llama(nn.Module):
|
||||
def __init__(
|
||||
self, num_layers: int, vocab_size: int, dims: int, mlp_dims: int, num_heads: int
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.embedding = nn.Embedding(vocab_size, dims)
|
||||
self.layers = [
|
||||
LlamaEncoderLayer(dims, mlp_dims, num_heads) for _ in range(num_layers)
|
||||
]
|
||||
self.norm = nn.RMSNorm(dims)
|
||||
self.out_proj = nn.Linear(dims, vocab_size, bias=False)
|
||||
|
||||
def __call__(self, x):
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
|
||||
x = self.embedding(x)
|
||||
|
||||
for l in self.layers:
|
||||
x, _ = l(x, mask)
|
||||
|
||||
x = self.norm(x)
|
||||
|
||||
return self.out_proj(x)
|
||||
|
||||
def generate(self, x, temp=1.0):
|
||||
cache = []
|
||||
try:
|
||||
# Make an additive causal mask. We will need that to process the prompt.
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
mask = mask.astype(self.embedding.weight.dtype)
|
||||
|
||||
# First we process the prompt x the same was as in __call__ but
|
||||
# save the caches in cache
|
||||
x = self.embedding(x)
|
||||
for l in self.layers:
|
||||
x, c = l(x, mask=mask)
|
||||
# We store the per layer cache in a simple python list
|
||||
cache.append(c)
|
||||
x = self.norm(x)
|
||||
# We only care about the last logits that generate the next token
|
||||
y = self.out_proj(x[:, -1])
|
||||
y = mx.random.categorical(y * (1 / temp))
|
||||
|
||||
# y now has size [1]
|
||||
yield y
|
||||
|
||||
# Now we parsed the prompt and generated the first token we
|
||||
# need to feed it back into the model and loop to generate the
|
||||
# rest.
|
||||
while True:
|
||||
# Unsqueezing the last dimension to add a sequence length
|
||||
# dimension of 1
|
||||
x = y[:, None]
|
||||
|
||||
x = self.embedding(x)
|
||||
for i in range(len(cache)):
|
||||
# We are overwriting the arrays in the cache list. When
|
||||
# the computation will happen, MLX will be discarding the
|
||||
# old cache the moment it is not needed anymore.
|
||||
x, cache[i] = self.layers[i](x, mask=None, cache=cache[i])
|
||||
x = self.norm(x)
|
||||
y = self.out_proj(x[:, -1])
|
||||
y = mx.random.categorical(y * (1 / temp))
|
||||
|
||||
yield y
|
||||
|
||||
finally:
|
||||
del cache
|
||||
|
||||
|
||||
def load_model(model_path):
|
||||
weights = mx.load(model_path)
|
||||
mlp_dims, dims = weights["layers.0.linear1.weight"].shape
|
||||
num_heads = dims // 128
|
||||
num_layers = max(int(l.split(".")[1]) for l in weights.keys() if "layers" in l) + 1
|
||||
vocab_size = weights["out_proj.weight"].shape[-1]
|
||||
model = Llama(num_layers, vocab_size, dims, mlp_dims, num_heads)
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
mx.eval(model.parameters())
|
||||
return model
|
289
lora/lora.py
Normal file
289
lora/lora.py
Normal file
@ -0,0 +1,289 @@
|
||||
import argparse
|
||||
import math
|
||||
import numpy as np
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import mlx.optimizers as optim
|
||||
from mlx.utils import tree_flatten
|
||||
|
||||
|
||||
from llama import LoRALinear, load_model
|
||||
import wikisql
|
||||
|
||||
|
||||
def build_parser():
|
||||
parser = argparse.ArgumentParser(description="Llama LoRA finetuning")
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="The model file containing MLX weights"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer", required=True, help="The sentencepiece tokenizer"
|
||||
)
|
||||
# Generation args
|
||||
parser.add_argument(
|
||||
"--num-tokens", "-n", type=int, default=100, help="How many tokens to generate"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--write-every", type=int, default=1, help="After how many tokens to detokenize"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--temp", type=float, default=0.8, help="The sampling temperature"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt",
|
||||
"-p",
|
||||
type=str,
|
||||
help="The prompt for generation",
|
||||
default=None,
|
||||
)
|
||||
|
||||
# Training args
|
||||
parser.add_argument(
|
||||
"--train",
|
||||
action="store_true",
|
||||
help="Do training",
|
||||
)
|
||||
parser.add_argument("--batch_size", type=int, default=4, help="Minibatch size.")
|
||||
parser.add_argument(
|
||||
"--iters", type=int, default=1000, help="Iterations to train for."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--val_batches",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Number of validation batches, -1 uses the entire validation set.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--learning_rate", type=float, default=1e-5, help="Adam learning rate."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--steps_per_report",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of training steps between loss reporting.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--steps_per_eval",
|
||||
type=int,
|
||||
default=200,
|
||||
help="Number of training steps between validations.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--adapter_file",
|
||||
type=str,
|
||||
default="adapters.npz",
|
||||
help="Save/load path for the trained adapter weights.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--test",
|
||||
action="store_true",
|
||||
help="Evaluate on the test set after training",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--test_batches",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Number of test set batches, -1 uses the entire test set.",
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
||||
return parser
|
||||
|
||||
|
||||
def loss(model, inputs, targets, lengths):
|
||||
# Run model on inputs
|
||||
logits = model(inputs)
|
||||
|
||||
# Mask padding tokens
|
||||
length_mask = mx.arange(inputs.shape[1])[None, :] < lengths[:, None]
|
||||
|
||||
# Calculate the loss
|
||||
ce = nn.losses.cross_entropy(logits, targets) * length_mask
|
||||
ntoks = length_mask.sum()
|
||||
ce = ce.sum() / ntoks
|
||||
return ce, ntoks
|
||||
|
||||
|
||||
def iterate_batches(dset, tokenizer, batch_size, shuffle=True):
|
||||
# Shuffle indices
|
||||
indices = np.arange(len(dset))
|
||||
if shuffle:
|
||||
indices = np.random.permutation(indices)
|
||||
|
||||
# Collect batches from dataset
|
||||
for i in range(0, len(indices) - batch_size + 1, batch_size):
|
||||
# Encode batch
|
||||
batch = tokenizer.encode([dset[indices[i + j]] for j in range(batch_size)])
|
||||
lengths = [len(x) for x in batch]
|
||||
|
||||
# Pad to the max length
|
||||
batch_arr = np.zeros((batch_size, max(lengths)), np.int32)
|
||||
for j in range(batch_size):
|
||||
batch_arr[j, : lengths[j]] = batch[j]
|
||||
batch = mx.array(batch_arr)
|
||||
yield batch[:, :-1], batch[:, 1:], mx.array(lengths)
|
||||
|
||||
|
||||
def evaluate(model, dataset, loss, tokenizer, batch_size, num_batches):
|
||||
all_losses = []
|
||||
ntokens = 0
|
||||
for it, batch in zip(
|
||||
range(num_batches),
|
||||
iterate_batches(dataset, tokenizer, batch_size, shuffle=False),
|
||||
):
|
||||
losses, toks = loss(model, *batch)
|
||||
all_losses.append((losses * toks).item())
|
||||
ntokens += toks.item()
|
||||
|
||||
return np.sum(all_losses) / ntokens
|
||||
|
||||
|
||||
def train(model, train_set, val_set, optimizer, loss, tokenizer, args):
|
||||
# Create value and grad function for loss
|
||||
loss_value_and_grad = nn.value_and_grad(model, loss)
|
||||
|
||||
losses = []
|
||||
n_tokens = 0
|
||||
|
||||
# Main training loop
|
||||
start = time.perf_counter()
|
||||
for it, batch in zip(
|
||||
range(args.iters), iterate_batches(train_set, tokenizer, args.batch_size)
|
||||
):
|
||||
# Forward and backward pass
|
||||
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
|
||||
|
||||
# Model update
|
||||
optimizer.update(model, grad)
|
||||
mx.eval(model.parameters(), optimizer.state, lvalue)
|
||||
|
||||
# Record loss
|
||||
losses.append(lvalue.item())
|
||||
n_tokens += toks.item()
|
||||
|
||||
# Report training loss if needed
|
||||
if (it + 1) % args.steps_per_report == 0:
|
||||
train_loss = np.mean(losses)
|
||||
|
||||
stop = time.perf_counter()
|
||||
print(
|
||||
f"Iter {it + 1}: Train loss {train_loss:.3f}, "
|
||||
f"It/sec {args.steps_per_report / (stop - start):.3f}, "
|
||||
f"Tokens/sec {float(n_tokens) / (stop - start):.3f}"
|
||||
)
|
||||
losses = []
|
||||
n_tokens = 0
|
||||
start = time.perf_counter()
|
||||
|
||||
# Report validation loss if needed
|
||||
if it == 0 or (it + 1) % args.steps_per_eval == 0:
|
||||
stop = time.perf_counter()
|
||||
val_loss = evaluate(
|
||||
model, val_set, loss, tokenizer, args.batch_size, args.val_batches
|
||||
)
|
||||
print(
|
||||
f"Iter {it + 1}: "
|
||||
f"Val loss {val_loss:.3f}, "
|
||||
f"Val took {(time.perf_counter() - stop):.3f}s"
|
||||
)
|
||||
|
||||
start = time.perf_counter()
|
||||
|
||||
|
||||
def generate(model, prompt, tokenizer, args):
|
||||
# Encode prompt
|
||||
x = mx.array([[tokenizer.bos_id()] + tokenizer.encode(prompt)])
|
||||
|
||||
skip = 0
|
||||
prompt_processing = None
|
||||
tokens = []
|
||||
|
||||
# Genertation loop
|
||||
start = time.perf_counter()
|
||||
for token in model.generate(x, args.temp):
|
||||
tokens.append(token)
|
||||
|
||||
if len(tokens) == 1:
|
||||
# Actually perform the computation to measure the prompt processing time
|
||||
mx.eval(token)
|
||||
prompt_processing = time.perf_counter() - start
|
||||
|
||||
if len(tokens) >= args.num_tokens:
|
||||
break
|
||||
|
||||
if (len(tokens) % args.write_every) == 0:
|
||||
mx.eval(tokens)
|
||||
s = tokenizer.decode([t.item() for t in tokens])
|
||||
print(s[skip:], end="", flush=True)
|
||||
skip = len(s)
|
||||
|
||||
mx.eval(tokens)
|
||||
full_gen = time.perf_counter() - start
|
||||
|
||||
s = tokenizer.decode([t.item() for t in tokens])
|
||||
print(s[skip:], end="", flush=True)
|
||||
print()
|
||||
print(f"Prompt processing took: {prompt_processing:.3f} s")
|
||||
print(f"Full generation took: {full_gen:.3f} s")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = build_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
np.random.seed(args.seed)
|
||||
|
||||
print("Loading tokenizer")
|
||||
tokenizer = SentencePieceProcessor(model_file=args.tokenizer)
|
||||
|
||||
print("Loading pretrained model")
|
||||
model = load_model(args.model)
|
||||
|
||||
# Freeze all layers other than LORA linears
|
||||
model.freeze()
|
||||
for l in model.layers[16:32]:
|
||||
l.attention.query_proj = LoRALinear.from_linear(l.attention.query_proj)
|
||||
l.attention.value_proj = LoRALinear.from_linear(l.attention.value_proj)
|
||||
|
||||
p = sum(v.size for _, v in tree_flatten(model.parameters())) / 10**6
|
||||
print(f"Total parameters {p:.3f}M")
|
||||
p = sum(v.size for _, v in tree_flatten(model.trainable_parameters())) / 10**6
|
||||
print(f"Trainable parameters {p:.3f}M")
|
||||
|
||||
print("Loading datasets")
|
||||
train_set, valid_set, test_set = wikisql.load()
|
||||
|
||||
if args.train:
|
||||
print("Training")
|
||||
opt = optim.Adam(learning_rate=args.learning_rate)
|
||||
|
||||
# Train model
|
||||
train(model, train_set, valid_set, opt, loss, tokenizer, args)
|
||||
|
||||
# Save adapter weights
|
||||
mx.savez(args.adapter_file, **dict(tree_flatten(model.trainable_parameters())))
|
||||
|
||||
# Load the LoRA adapter weights which we assume should exist by this point
|
||||
model.load_weights(args.adapter_file)
|
||||
|
||||
if args.test:
|
||||
print("Testing")
|
||||
|
||||
test_loss = evaluate(
|
||||
model,
|
||||
test_set,
|
||||
loss,
|
||||
tokenizer,
|
||||
args.batch_size,
|
||||
num_batches=args.test_batches,
|
||||
)
|
||||
test_ppl = math.exp(test_loss)
|
||||
|
||||
print(f"Test loss {test_loss:.3f}, Test ppl {test_ppl:.3f}.")
|
||||
|
||||
if args.prompt is not None:
|
||||
print("Generating")
|
||||
|
||||
generate(model, args.prompt, tokenizer, args)
|
2
lora/requirements.txt
Normal file
2
lora/requirements.txt
Normal file
@ -0,0 +1,2 @@
|
||||
sentencepiece
|
||||
torch
|
101
lora/wikisql.py
Normal file
101
lora/wikisql.py
Normal file
@ -0,0 +1,101 @@
|
||||
"""
|
||||
Code to preprocess the WikiSQL dataset adapted from
|
||||
https://github.com/salesforce/WikiSQL and
|
||||
https://huggingface.co/sqllama/sqllama-V0/blob/main/wikisql.ipynb .
|
||||
"""
|
||||
|
||||
|
||||
import json
|
||||
import os
|
||||
|
||||
|
||||
def load():
|
||||
"""
|
||||
Load all three splits of the WikiSQL dataset.
|
||||
"""
|
||||
return (WikiSQL(dn) for dn in ["train", "dev", "test"])
|
||||
|
||||
|
||||
class WikiSQL:
|
||||
def __init__(self, dataset, save_dir="/tmp"):
|
||||
valid_sets = ("train", "dev", "test")
|
||||
if dataset not in valid_sets:
|
||||
raise ValueError(f"Dataset must be in {valid_sets}, got {dataset}")
|
||||
data_dir = os.path.join(save_dir, "wikisql")
|
||||
self._maybe_download(data_dir)
|
||||
|
||||
self._parse_tables(os.path.join(data_dir, f"data/{dataset}.tables.jsonl"))
|
||||
self._parse_queries(os.path.join(data_dir, f"data/{dataset}.jsonl"))
|
||||
|
||||
def _maybe_download(self, data_dir):
|
||||
if not os.path.exists(data_dir):
|
||||
import io
|
||||
from urllib import request
|
||||
import tarfile
|
||||
|
||||
url = "https://raw.githubusercontent.com/salesforce/WikiSQL/master/data.tar.bz2"
|
||||
r = request.urlopen(url)
|
||||
with tarfile.open(fileobj=io.BytesIO(r.read())) as tf:
|
||||
tf.extractall(data_dir)
|
||||
|
||||
def _parse_tables(self, tables):
|
||||
self._tables = {}
|
||||
with open(tables) as f:
|
||||
for line in f:
|
||||
table = json.loads(line)
|
||||
self._tables[table["id"]] = {
|
||||
"columns": table["header"],
|
||||
"types": table["types"],
|
||||
"desc": f"table: {table['id']}\ncolumns: {', '.join(table['header'])}",
|
||||
}
|
||||
|
||||
def _parse_queries(self, queries):
|
||||
self._queries = []
|
||||
with open(queries) as f:
|
||||
for line in f:
|
||||
query = json.loads(line)
|
||||
table = self._tables[query["table_id"]]
|
||||
question = query["question"]
|
||||
answer = self.query_to_text(
|
||||
query["sql"], query["table_id"], table["columns"], table["types"]
|
||||
)
|
||||
self._queries.append(
|
||||
f"<s>{table['desc']}\nQ: {question}\nA: {answer}</s>"
|
||||
)
|
||||
|
||||
def query_to_text(self, query, table, columns, types):
|
||||
aggregation_ops = ["", "MAX", "MIN", "COUNT", "SUM", "AVG"]
|
||||
condition_ops = ["=", ">", "<", "OP"]
|
||||
column = columns[query["sel"]]
|
||||
aggregation = (aggregation_ops[query["agg"]] + " ") if query["agg"] > 0 else ""
|
||||
sql = f"SELECT {aggregation}{column} FROM {table}"
|
||||
|
||||
conditions = query["conds"]
|
||||
if conditions:
|
||||
cs = []
|
||||
for i, o, v in conditions:
|
||||
column = columns[i]
|
||||
op = condition_ops[o]
|
||||
|
||||
if types[i] == "text":
|
||||
value = f"'{v}'"
|
||||
else:
|
||||
value = v
|
||||
cs.append(f"{column} {op} {value}")
|
||||
|
||||
sql += " WHERE " + " AND ".join(cs)
|
||||
|
||||
return sql
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self._queries[idx]
|
||||
|
||||
def __len__(self):
|
||||
return len(self._queries)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
datanames = ["train", "dev", "test"]
|
||||
sizes = [56355, 8421, 15878]
|
||||
for dataname, size in zip(datanames, sizes):
|
||||
len(WikiSQL(dataname)) == 56355, f"Wrong {dataname} set size."
|
Loading…
Reference in New Issue
Block a user