Merge branch 'ml-explore:main' into completion_only

This commit is contained in:
Chime Ogbuji 2024-11-05 15:18:05 -05:00 committed by GitHub
commit 603dab57be
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 23 additions and 26 deletions

View File

@ -42,7 +42,7 @@ def create_attention_mask(h: mx.array, cache: Optional[Any] = None):
if cache is not None and cache[0] is not None:
c = cache[0]
if hasattr(c, "max_size"):
offset = min(c.max_size - 1, c.offset)
offset = min(c.max_size, c.offset)
window_size = c.max_size
else:
offset = c.offset

View File

@ -325,9 +325,9 @@ class RotatingKVCache(_BaseCache):
self.keys = self._temporal_order(self.keys)
self.values = self._temporal_order(self.values)
# The largest size is self.max_size + S - 1 to ensure
# The largest size is self.max_size + S to ensure
# every token gets at least self.max_size context
trim_size = self._idx - self.max_size + 1
trim_size = self._idx - self.max_size
self.keys = self._trim(trim_size, self.keys, keys)
self.values = self._trim(trim_size, self.values, values)
self.offset += keys.shape[2]

View File

@ -6,12 +6,6 @@ from transformers import AutoTokenizer
REPLACEMENT_CHAR = "\ufffd"
def _remove_space(x):
if x and x[0] == " ":
return x[1:]
return x
class StreamingDetokenizer:
"""The streaming detokenizer interface so that we can detokenize one token at a time.
@ -123,42 +117,42 @@ class SPMStreamingDetokenizer(StreamingDetokenizer):
def __init__(self, tokenizer, trim_space=True):
self.trim_space = trim_space
self._sep = "\u2581".encode()
# Extract the tokens in a list from id to text
self.tokenmap = [""] * (max(tokenizer.vocab.values()) + 1)
for value, tokenid in tokenizer.vocab.items():
self.tokenmap[tokenid] = value
# Replace bytes with their value
for i in range(len(self.tokenmap)):
if self.tokenmap[i].startswith("<0x"):
self.tokenmap[i] = chr(int(self.tokenmap[i][3:5], 16))
if value.startswith("<0x"):
# Replace bytes with their value
self.tokenmap[tokenid] = bytes([int(value[3:5], 16)])
else:
self.tokenmap[tokenid] = value.encode()
self.reset()
def reset(self):
self.offset = 0
self._unflushed = ""
self._unflushed = b""
self.text = ""
self.tokens = []
def _flush(self):
text = self._unflushed.replace(self._sep, b" ").decode("utf-8")
if not self.text and self.trim_space and text and text[0] == " ":
text = text[1:]
self.text += text
def add_token(self, token):
v = self.tokenmap[token]
if v[0] == "\u2581":
if self.text or not self.trim_space:
self.text += self._unflushed.replace("\u2581", " ")
else:
self.text = _remove_space(self._unflushed.replace("\u2581", " "))
if v.startswith(self._sep):
self._flush()
self._unflushed = v
else:
self._unflushed += v
def finalize(self):
if self.text or not self.trim_space:
self.text += self._unflushed.replace("\u2581", " ")
else:
self.text = _remove_space(self._unflushed.replace("\u2581", " "))
self._unflushed = ""
self._flush()
self._unflushed = b""
class BPEStreamingDetokenizer(StreamingDetokenizer):

View File

@ -42,6 +42,9 @@ class TestTokenizers(unittest.TestCase):
text += detokenizer.last_segment
self.assertEqual(text, expected_text)
tokens = tokenizer.encode("こんにちは私の名前はAI")
check(tokens)
tokens = tokenizer.encode("a ,b")
check(tokens)