Add Direct Preference Optimization (DPO) method

Fixes #513

Implement the Direct Preference Optimization (DPO) method as a Reinforcement Learning from Human Feedback (RLHF) example.

* **Add DPO Functions**: Add `get_batched_logps` and `dpo_loss` functions to `llms/mlx_lm/utils.py` for DPO implementation.
* **Update Training Logic**: Update `llms/mlx_lm/tuner/trainer.py` to include DPO-specific training logic, including a new `dpo_loss` function and condition to check for DPO loss in the training loop.
* **Add Configuration Options**: Add configuration options for DPO in `llms/mlx_lm/examples/lora_config.yaml`.
* **Update Documentation**: Update `llms/mlx_lm/README.md` to include instructions for using DPO.
* **Add Unit Tests**: Add `llms/tests/test_dpo.py` with unit tests for `get_batched_logps`, `dpo_loss`, and DPO-specific training logic.

---

For more details, open the [Copilot Workspace session](https://copilot-workspace.githubnext.com/ml-explore/mlx-examples/issues/513?shareId=XXXX-XXXX-XXXX-XXXX).
This commit is contained in:
Anupam Mediratta 2025-02-12 15:21:21 +05:30
parent ec30dc3538
commit 607c300e18
5 changed files with 211 additions and 3 deletions

View File

@ -8,3 +8,90 @@ parent directory.
This package also supports fine tuning with LoRA or QLoRA. For more information
see the [LoRA documentation](LORA.md).
## Reinforcement Learning from Human Feedback (RLHF) with Direct Preference Optimization (DPO)
This package now includes an example of Reinforcement Learning from Human Feedback (RLHF) using the Direct Preference Optimization (DPO) method.
### Paper
[Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://arxiv.org/abs/2305.18290)
### Notes
[Direct Preference Optimization (DPO): A Simplified Explanation by João Lages](https://medium.com/@joaolages/direct-preference-optimization-dpo-622fc1f18707)
![](https://miro.medium.com/v2/resize:fit:1400/format:webp/1*AqKOT0pxzi5kOgiobb-Fvg.png)
### Implementation examples
- [huggingface/trl: TRL - Transformer Reinforcement Learning](https://github.com/huggingface/trl)
- [eric-mitchell/direct-preference-optimization: Direct Preference Optimization](https://github.com/eric-mitchell/direct-preference-optimization)
### Possible MLX implementation
Policy and reference log probabilities:
```python
def get_batched_logps(model, inputs, targets):
logits, _ = model(inputs)
logits = logits.astype(mx.float32)
loss_mask = targets != 0
per_token_logps = mx.take_along_axis(nn.log_softmax(logits), targets[..., None], axis=2).squeeze(2)
return tuple((per_token_logps * loss_mask).sum(-1).split(2))
```
Loss:
```python
def dpo_loss(model, beta, label_smoothing, reference_chosen_logps, reference_rejected_logps, inputs, targets):
chosen_logps, rejected_logps = get_batched_logps(model, inputs, targets)
pi_logratios = chosen_logps - rejected_logps
reference_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - reference_logratios
losses = -nn.log_sigmoid(beta * logits) * (1.0 - label_smoothing) - nn.log_sigmoid(-beta * logits) * label_smoothing
chosen_rewards = beta * (chosen_logps - reference_chosen_logps)
rejected_rewards = beta * (rejected_logps - reference_rejected_logps)
reward_accuracies = (chosen_rewards > rejected_rewards).astype(mx.float32)
reward_margins = chosen_rewards - rejected_rewards
ntoks = (inputs != 0).sum()
return (
losses.mean(),
chosen_rewards.mean(),
rejected_rewards.mean(),
reward_accuracies.mean(),
reward_margins.mean(),
ntoks,
)
```
Beta: The temperature parameter for the DPO loss is typically set in the range of 0.1 to 0.5. The reference model is ignored when `beta` equals 0.
Label smoothing: This parameter represents the conservativeness for DPO loss, assuming that preferences are noisy and can be flipped with a probability of `label_smoothing`.
> **Note** `label_smoothing > 0` defines the [Conservative DPO](https://ericmitchell.ai/cdpo.pdf) loss.
### Usage Instructions
To use the Direct Preference Optimization (DPO) method in your training, follow these steps:
1. **Add Configuration Options**: Update your configuration file (e.g., `llms/mlx_lm/examples/lora_config.yaml`) to include the DPO-specific options:
```yaml
loss_type: "dpo"
beta: 0.1
label_smoothing: 0.0
```
2. **Implement DPO Functions**: Ensure that the `get_batched_logps` and `dpo_loss` functions are implemented in your `llms/mlx_lm/utils.py` file.
3. **Update Training Logic**: Modify your training script (e.g., `llms/mlx_lm/tuner/trainer.py`) to include DPO-specific training logic. This involves updating the `train` function to check for the DPO loss type and apply the DPO loss calculation accordingly.
4. **Run Training**: Execute your training script with the updated configuration and logic to train your model using the DPO method.
By following these steps, you can leverage the Direct Preference Optimization (DPO) method for Reinforcement Learning from Human Feedback (RLHF) in your MLX training pipeline.

View File

@ -78,3 +78,7 @@ lora_parameters:
# prompt_feature: "text"
# completion_feature: "summary"
# DPO parameters
loss_type: "dpo"
beta: 0.1
label_smoothing: 0.0

View File

@ -15,6 +15,7 @@ from mlx.utils import tree_flatten
from transformers import PreTrainedTokenizer
from .datasets import CompletionsDataset
from ..utils import get_batched_logps, dpo_loss as dpo_loss_fn
def grad_checkpoint(layer):
@ -64,6 +65,18 @@ class TrainingArgs:
default=False,
metadata={"help": "Use gradient checkpointing to reduce memory use."},
)
loss_type: str = field(
default="cross_entropy",
metadata={"help": "Type of loss function to use: 'cross_entropy' or 'dpo'."},
)
beta: float = field(
default=0.1,
metadata={"help": "Temperature parameter for DPO loss."},
)
label_smoothing: float = field(
default=0.0,
metadata={"help": "Label smoothing parameter for DPO loss."},
)
def default_loss(model, batch, lengths):
@ -83,6 +96,23 @@ def default_loss(model, batch, lengths):
return ce, ntoks
def dpo_loss(model, batch, lengths, beta, label_smoothing):
inputs = batch[:, :-1]
targets = batch[:, 1:]
reference_chosen_logps, reference_rejected_logps = get_batched_logps(model, inputs, targets)
return dpo_loss_fn(
model,
beta,
label_smoothing,
reference_chosen_logps,
reference_rejected_logps,
inputs,
targets,
)
def iterate_batches(
dataset,
tokenizer,
@ -217,7 +247,12 @@ def train(
def step(batch):
# Forward and backward pass
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
if args.loss_type == "dpo":
(lvalue, toks), grad = nn.value_and_grad(model, dpo_loss)(
model, *batch, args.beta, args.label_smoothing
)
else:
(lvalue, toks), grad = nn.value_and_grad(model, loss)(model, *batch)
# All reduce the gradients if running in distributed mode
grad = average_gradients(grad)
@ -227,8 +262,6 @@ def train(
return lvalue, toks
loss_value_and_grad = nn.value_and_grad(model, loss)
losses = 0
n_tokens = 0
steps = 0

View File

@ -1050,3 +1050,39 @@ def convert(
if upload_repo is not None:
upload_to_hub(mlx_path, upload_repo, hf_path)
def get_batched_logps(model, inputs, targets):
logits, _ = model(inputs)
logits = logits.astype(mx.float32)
loss_mask = targets != 0
per_token_logps = mx.take_along_axis(nn.log_softmax(logits), targets[..., None], axis=2).squeeze(2)
return tuple((per_token_logps * loss_mask).sum(-1).split(2))
def dpo_loss(model, beta, label_smoothing, reference_chosen_logps, reference_rejected_logps, inputs, targets):
chosen_logps, rejected_logps = get_batched_logps(model, inputs, targets)
pi_logratios = chosen_logps - rejected_logps
reference_logratios = reference_chosen_logps - reference_rejected_logps
logits = pi_logratios - reference_logratios
losses = -nn.log_sigmoid(beta * logits) * (1.0 - label_smoothing) - nn.log_sigmoid(-beta * logits) * label_smoothing
chosen_rewards = beta * (chosen_logps - reference_chosen_logps)
rejected_rewards = beta * (rejected_logps - reference_rejected_logps)
reward_accuracies = (chosen_rewards > rejected_rewards).astype(mx.float32)
reward_margins = chosen_rewards - rejected_rewards
ntoks = (inputs != 0).sum()
return (
losses.mean(),
chosen_rewards.mean(),
rejected_rewards.mean(),
reward_accuracies.mean(),
reward_margins.mean(),
ntoks,
)

48
llms/tests/test_dpo.py Normal file
View File

@ -0,0 +1,48 @@
import unittest
import numpy as np
import mlx.core as mx
import mlx.nn as nn
from mlx_lm.utils import get_batched_logps, dpo_loss
from mlx_lm.tuner.trainer import train, TrainingArgs
from unittest.mock import MagicMock
class TestDPO(unittest.TestCase):
def setUp(self):
self.model = MagicMock()
self.inputs = mx.array([[1, 2, 3], [4, 5, 6]])
self.targets = mx.array([[1, 2, 3], [4, 5, 6]])
self.reference_chosen_logps = mx.array([0.1, 0.2])
self.reference_rejected_logps = mx.array([0.3, 0.4])
self.beta = 0.1
self.label_smoothing = 0.0
def test_get_batched_logps(self):
self.model.return_value = (mx.array([[[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]], [[0.7, 0.8], [0.9, 1.0], [1.1, 1.2]]]), None)
chosen_logps, rejected_logps = get_batched_logps(self.model, self.inputs, self.targets)
np.testing.assert_array_almost_equal(chosen_logps.asnumpy(), np.array([0.1, 0.7]))
np.testing.assert_array_almost_equal(rejected_logps.asnumpy(), np.array([0.3, 0.9]))
def test_dpo_loss(self):
self.model.return_value = (mx.array([[[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]], [[0.7, 0.8], [0.9, 1.0], [1.1, 1.2]]]), None)
loss, chosen_rewards, rejected_rewards, reward_accuracies, reward_margins, ntoks = dpo_loss(
self.model, self.beta, self.label_smoothing, self.reference_chosen_logps, self.reference_rejected_logps, self.inputs, self.targets
)
self.assertAlmostEqual(loss.item(), -0.6931472)
self.assertAlmostEqual(chosen_rewards.item(), 0.0)
self.assertAlmostEqual(rejected_rewards.item(), 0.0)
self.assertAlmostEqual(reward_accuracies.item(), 0.0)
self.assertAlmostEqual(reward_margins.item(), 0.0)
self.assertEqual(ntoks.item(), 6)
def test_train_with_dpo_loss(self):
train_dataset = MagicMock()
val_dataset = MagicMock()
tokenizer = MagicMock()
optimizer = MagicMock()
args = TrainingArgs(loss_type="dpo", beta=self.beta, label_smoothing=self.label_smoothing)
train(self.model, tokenizer, optimizer, train_dataset, val_dataset, args=args)
self.model.assert_called()
if __name__ == "__main__":
unittest.main()