mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-28 12:13:25 +08:00
updates
This commit is contained in:
parent
a683344450
commit
61fad00892
@ -1,899 +0,0 @@
|
|||||||
import math
|
|
||||||
from dataclasses import dataclass, field
|
|
||||||
from typing import Tuple, Union
|
|
||||||
import mlx.core as mx
|
|
||||||
import mlx.nn as nn
|
|
||||||
|
|
||||||
from .base import BaseModelArgs
|
|
||||||
from .cache import MambaCache
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class ModelArgs(BaseModelArgs):
|
|
||||||
model_type: str
|
|
||||||
num_heads: int
|
|
||||||
head_dim: int
|
|
||||||
vocab_size: int
|
|
||||||
hidden_size: int
|
|
||||||
state_size: int
|
|
||||||
num_hidden_layers: int
|
|
||||||
layer_norm_epsilon: float
|
|
||||||
expand: int
|
|
||||||
conv_kernel: int
|
|
||||||
n_groups: int
|
|
||||||
use_bias: bool
|
|
||||||
use_conv_bias: bool
|
|
||||||
initializer_range: float
|
|
||||||
residual_in_fp32: bool
|
|
||||||
chunk_size: int
|
|
||||||
tie_word_embeddings: bool
|
|
||||||
time_step_limit: Tuple[float, float]
|
|
||||||
time_step_rank: Union[int, str]
|
|
||||||
time_step_min: float
|
|
||||||
time_step_max: float
|
|
||||||
time_step_floor: float
|
|
||||||
norm_before_gate: bool = True
|
|
||||||
|
|
||||||
def __post_init__(self):
|
|
||||||
if not hasattr(self, "intermediate_size"):
|
|
||||||
self.intermediate_size = int(self.expand * self.hidden_size)
|
|
||||||
if not hasattr(self, "head_dim"):
|
|
||||||
self.head_dim = self.hidden_size // self.num_heads
|
|
||||||
if self.time_step_rank == "auto":
|
|
||||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
|
||||||
|
|
||||||
|
|
||||||
def segsum(x):
|
|
||||||
"""Stable segment sum calculation.
|
|
||||||
|
|
||||||
`exp(segsum(A))` produces a 1-semiseparable matrix, which is equivalent to a scalar SSM.
|
|
||||||
"""
|
|
||||||
T = x.shape[-1]
|
|
||||||
x = mx.expand_dims(x, -1)
|
|
||||||
x = mx.repeat(x, T, axis=-1)
|
|
||||||
mask = mx.tril(mx.ones((T, T), dtype=mx.bool_), k=-1)
|
|
||||||
x = mx.where(mask, x, 0)
|
|
||||||
x_segsum = mx.cumsum(x, axis=-2)
|
|
||||||
mask = mx.tril(mx.ones((T, T), dtype=mx.bool_), k=0)
|
|
||||||
x_segsum = mx.where(mask, x_segsum, -mx.inf)
|
|
||||||
return x_segsum
|
|
||||||
|
|
||||||
def ssd(x, A, B, C, chunk_size, initial_states=None):
|
|
||||||
"""Structured State Space Duality (SSD) - the core of Mamba-2
|
|
||||||
|
|
||||||
Arguments
|
|
||||||
x: (batch, seqlen, n_heads, d_head)
|
|
||||||
A: (batch, seqlen, n_heads)
|
|
||||||
B: (batch, seqlen, n_heads, d_state)
|
|
||||||
C: (batch, seqlen, n_heads, d_state)
|
|
||||||
|
|
||||||
Return
|
|
||||||
y: (batch, seqlen, n_heads, d_head)
|
|
||||||
final_state: final state for inference
|
|
||||||
"""
|
|
||||||
assert x.shape[1] % chunk_size == 0
|
|
||||||
|
|
||||||
# Rearrange into chunks
|
|
||||||
def rearrange_to_chunks(m):
|
|
||||||
shape = list(m.shape)
|
|
||||||
shape[1:2] = [shape[1] // chunk_size, chunk_size]
|
|
||||||
return m.reshape(shape)
|
|
||||||
|
|
||||||
x_chunked = rearrange_to_chunks(x)
|
|
||||||
A_chunked = rearrange_to_chunks(A)
|
|
||||||
B_chunked = rearrange_to_chunks(B)
|
|
||||||
C_chunked = rearrange_to_chunks(C)
|
|
||||||
|
|
||||||
# Transpose A for easier cumsum
|
|
||||||
A_chunked = mx.transpose(A_chunked, (0, 3, 1, 2)) # b c l h -> b h c l
|
|
||||||
A_cumsum = mx.cumsum(A_chunked, axis=-1)
|
|
||||||
|
|
||||||
# 1. Compute the output for each intra-chunk (diagonal blocks)
|
|
||||||
L = mx.exp(segsum(A_chunked))
|
|
||||||
Y_diag = mx.einsum("bclhn,bcshn,bhcls,bcshp->bclhp", C_chunked, B_chunked, L, x_chunked)
|
|
||||||
|
|
||||||
# 2. Compute the state for each intra-chunk
|
|
||||||
decay_states = mx.exp(A_cumsum[:, :, :, -1:] - A_cumsum)
|
|
||||||
states = mx.einsum("bclhn,bhcl,bclhp->bchpn", B_chunked, decay_states, x_chunked)
|
|
||||||
|
|
||||||
# 3. Compute the inter-chunk SSM recurrence
|
|
||||||
if initial_states is None:
|
|
||||||
initial_states = mx.zeros_like(states[:, :1])
|
|
||||||
states = mx.concatenate([initial_states, states], axis=1)
|
|
||||||
|
|
||||||
A_cumsum_last = A_cumsum[:, :, :, -1]
|
|
||||||
A_cumsum_padded = mx.pad(A_cumsum_last, [(0, 0), (0, 0), (1, 0)])
|
|
||||||
decay_chunk = mx.exp(segsum(A_cumsum_padded))
|
|
||||||
new_states = mx.einsum("bhzc,bchpn->bzhpn", decay_chunk, states)
|
|
||||||
states, final_state = new_states[:, :-1], new_states[:, -1]
|
|
||||||
|
|
||||||
# 4. Compute state -> output conversion per chunk
|
|
||||||
state_decay_out = mx.exp(A_cumsum)
|
|
||||||
Y_off = mx.einsum("bclhn,bchpn,bhcl->bclhp", C_chunked, states, state_decay_out)
|
|
||||||
|
|
||||||
# Add output of intra-chunk and inter-chunk terms
|
|
||||||
Y_combined = Y_diag + Y_off
|
|
||||||
|
|
||||||
# Reshape back to original sequence shape
|
|
||||||
batch, chunks, chunk_len, heads, head_dim = Y_combined.shape
|
|
||||||
Y = Y_combined.reshape(batch, chunks * chunk_len, heads, head_dim)
|
|
||||||
|
|
||||||
return Y, final_state
|
|
||||||
|
|
||||||
def silu(x):
|
|
||||||
"""Applies the Sigmoid Linear Unit (SiLU), element-wise."""
|
|
||||||
return x * mx.sigmoid(x)
|
|
||||||
|
|
||||||
|
|
||||||
class Mamba2Block(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.args = args
|
|
||||||
self.d_model = args.hidden_size
|
|
||||||
self.d_state = args.state_size
|
|
||||||
self.d_conv = args.conv_kernel
|
|
||||||
self.expand = args.expand
|
|
||||||
self.d_inner = int(self.expand * self.d_model)
|
|
||||||
self.n_groups = args.n_groups
|
|
||||||
self.n_heads = args.num_heads
|
|
||||||
self.d_head = self.d_inner // self.n_heads
|
|
||||||
self.chunk_size = args.chunk_size
|
|
||||||
|
|
||||||
d_in_proj = 2 * self.d_inner + 2 * self.n_groups * self.d_state + self.n_heads
|
|
||||||
self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=args.use_bias)
|
|
||||||
|
|
||||||
self.dt_bias = mx.random.normal((self.n_heads,)) * args.initializer_range
|
|
||||||
self.A_log = mx.random.normal((self.n_heads,)) * args.initializer_range
|
|
||||||
self.D = mx.random.normal((self.n_heads,)) * args.initializer_range
|
|
||||||
|
|
||||||
# Use standard Conv1d with groups for depthwise convolution
|
|
||||||
conv_dim = self.d_inner + 2 * self.n_groups * self.d_state
|
|
||||||
self.conv1d = nn.Conv1d(
|
|
||||||
in_channels=conv_dim,
|
|
||||||
out_channels=conv_dim,
|
|
||||||
kernel_size=self.d_conv,
|
|
||||||
groups=conv_dim, # Makes it depthwise
|
|
||||||
padding=self.d_conv-1,
|
|
||||||
bias=args.use_conv_bias
|
|
||||||
)
|
|
||||||
|
|
||||||
self.norm = nn.RMSNorm(self.d_inner, eps=args.layer_norm_epsilon)
|
|
||||||
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=args.use_bias)
|
|
||||||
|
|
||||||
def __call__(self, u, cache=None):
|
|
||||||
"""
|
|
||||||
Arguments
|
|
||||||
u: (batch, seqlen, d_model) input
|
|
||||||
cache: Optional tuple of (conv_state, ssm_state) for inference
|
|
||||||
|
|
||||||
Return (y, cache)
|
|
||||||
y: (batch, seqlen, d_model) output
|
|
||||||
cache: updated tuple of (conv_state, ssm_state) for inference
|
|
||||||
"""
|
|
||||||
if cache is not None:
|
|
||||||
return self.step(u, cache)
|
|
||||||
|
|
||||||
# Initialize cache if needed
|
|
||||||
if cache is None:
|
|
||||||
cache = [None, None] # Initialize with None values
|
|
||||||
|
|
||||||
# Compute projections
|
|
||||||
zxbcdt = self.in_proj(u)
|
|
||||||
|
|
||||||
# Split projections
|
|
||||||
d_inner = self.d_inner
|
|
||||||
d_state = self.n_groups * self.d_state
|
|
||||||
|
|
||||||
z, xBC, dt = mx.split(
|
|
||||||
zxbcdt,
|
|
||||||
[d_inner, d_inner + 2 * d_state],
|
|
||||||
axis=-1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Process dt with softplus
|
|
||||||
dt = mx.softplus(dt + self.dt_bias) # (batch, seqlen, n_heads)
|
|
||||||
|
|
||||||
# Apply convolution to xBC
|
|
||||||
xBC_transposed = mx.transpose(xBC, (0, 2, 1)) # (batch, d, seqlen)
|
|
||||||
xBC_conv = self.conv1d(xBC_transposed)
|
|
||||||
xBC_conv = mx.transpose(xBC_conv, (0, 2, 1)) # (batch, seqlen, d)
|
|
||||||
xBC = silu(xBC_conv[:, :u.shape[1], :]) # Ensure we only keep seqlen elements
|
|
||||||
|
|
||||||
# Split xBC into x, B, C
|
|
||||||
x, B, C = mx.split(
|
|
||||||
xBC,
|
|
||||||
[d_inner, d_inner + d_state],
|
|
||||||
axis=-1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Reshape x for heads
|
|
||||||
batch, seqlen = x.shape[0], x.shape[1]
|
|
||||||
x_reshaped = x.reshape(batch, seqlen, self.n_heads, self.d_head)
|
|
||||||
|
|
||||||
# Reshape B and C for SSM
|
|
||||||
B = B.reshape(batch, seqlen, 1, d_state)
|
|
||||||
C = C.reshape(batch, seqlen, 1, d_state)
|
|
||||||
|
|
||||||
# Apply SSM with SSD algorithm
|
|
||||||
A = -mx.exp(self.A_log) # (n_heads,)
|
|
||||||
A_dt = A * dt # (batch, seqlen, n_heads)
|
|
||||||
|
|
||||||
y, ssm_state = ssd(
|
|
||||||
x_reshaped * mx.expand_dims(dt, -1), # Scale x by dt
|
|
||||||
A_dt,
|
|
||||||
B,
|
|
||||||
C,
|
|
||||||
self.chunk_size
|
|
||||||
)
|
|
||||||
|
|
||||||
# Apply D and reshape
|
|
||||||
y = y + x_reshaped * mx.reshape(self.D, (1, 1, self.n_heads, 1))
|
|
||||||
y = y.reshape(batch, seqlen, d_inner)
|
|
||||||
|
|
||||||
# Apply norm and gating
|
|
||||||
y = self.norm(y, z)
|
|
||||||
|
|
||||||
# Final projection
|
|
||||||
y = self.out_proj(y)
|
|
||||||
|
|
||||||
# Create cache for inference
|
|
||||||
if seqlen == 1 and cache is not None:
|
|
||||||
conv_state = mx.zeros((batch, d_inner + 2 * d_state, self.d_conv))
|
|
||||||
conv_state = mx.update_slice(conv_state, xBC.reshape(batch, -1, 1), (0, 0, self.d_conv - 1))
|
|
||||||
cache[0] = conv_state
|
|
||||||
cache[1] = ssm_state
|
|
||||||
|
|
||||||
return y, cache
|
|
||||||
|
|
||||||
def step(self, u, cache):
|
|
||||||
"""Take an inference step for the current input and cache
|
|
||||||
|
|
||||||
Arguments
|
|
||||||
u: (batch, seqlen, d_model) - can be multiple tokens
|
|
||||||
cache: tuple of (conv_state, ssm_state)
|
|
||||||
|
|
||||||
Return (y, cache)
|
|
||||||
y: (batch, seqlen, d_model)
|
|
||||||
cache: updated cache object
|
|
||||||
"""
|
|
||||||
batch, seqlen = u.shape[0], u.shape[1]
|
|
||||||
|
|
||||||
# Initialize cache if it's None
|
|
||||||
if cache[0] is None or cache[1] is None:
|
|
||||||
d_state = self.n_groups * self.d_state
|
|
||||||
conv_dim = self.d_inner + 2 * d_state
|
|
||||||
conv_state = mx.zeros((batch, conv_dim, self.d_conv))
|
|
||||||
|
|
||||||
# Fix: use correct state size per head
|
|
||||||
state_per_head = d_state // self.n_heads
|
|
||||||
ssm_state = mx.zeros((batch, self.n_heads, self.d_head, state_per_head))
|
|
||||||
else:
|
|
||||||
conv_state, ssm_state = cache[0], cache[1]
|
|
||||||
|
|
||||||
# Project input
|
|
||||||
zxbcdt = self.in_proj(u) # (batch, seqlen, d_in_proj)
|
|
||||||
|
|
||||||
# Split projections
|
|
||||||
d_inner = self.d_inner
|
|
||||||
d_state = self.n_groups * self.d_state
|
|
||||||
|
|
||||||
z, xBC, dt = mx.split(
|
|
||||||
zxbcdt,
|
|
||||||
[d_inner, d_inner + 2 * d_state],
|
|
||||||
axis=-1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Process each token through the convolution sequentially
|
|
||||||
outputs = []
|
|
||||||
for i in range(seqlen):
|
|
||||||
# Get current token's input
|
|
||||||
xBC_i = xBC[:, i] # (batch, d_inner + 2*d_state)
|
|
||||||
dt_i = dt[:, i] # (batch, dt_size)
|
|
||||||
|
|
||||||
# Extract the head-specific dt values
|
|
||||||
dt_size = dt_i.shape[-1]
|
|
||||||
|
|
||||||
if dt_size % self.n_heads == 0:
|
|
||||||
# Reshape dt_i to extract the head-specific values
|
|
||||||
dt_reshaped = dt_i.reshape(batch, self.n_heads, dt_size // self.n_heads)
|
|
||||||
# Take the first element for each head
|
|
||||||
dt_heads = dt_reshaped[:, :, 0]
|
|
||||||
else:
|
|
||||||
# If we can't reshape, just take the first n_heads elements
|
|
||||||
dt_heads = dt_i[:, :self.n_heads]
|
|
||||||
|
|
||||||
|
|
||||||
# Process dt with softplus
|
|
||||||
dt_heads = nn.softplus(dt_heads + self.dt_bias.reshape(1, -1)) # (batch, n_heads)
|
|
||||||
|
|
||||||
# Update convolution state
|
|
||||||
conv_state = mx.roll(conv_state, shift=-1, axis=-1)
|
|
||||||
|
|
||||||
# Use slice_update instead of update_slice
|
|
||||||
# Reshape xBC_i to match the expected shape for the update
|
|
||||||
xBC_reshaped = xBC_i.reshape(batch, -1, 1)
|
|
||||||
# Create start_indices for the update
|
|
||||||
start_indices = mx.array([0, 0, self.d_conv - 1])
|
|
||||||
# Update the conv_state
|
|
||||||
conv_state = mx.slice_update(
|
|
||||||
conv_state,
|
|
||||||
xBC_reshaped,
|
|
||||||
start_indices,
|
|
||||||
axes=(0, 1, 2)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Apply convolution step
|
|
||||||
weight = self.conv1d.weight
|
|
||||||
bias = self.conv1d.bias if self.args.use_conv_bias else None
|
|
||||||
|
|
||||||
xBC_conv = mx.sum(conv_state * weight.reshape(1, -1, self.d_conv), axis=-1)
|
|
||||||
if bias is not None:
|
|
||||||
xBC_conv = xBC_conv + bias
|
|
||||||
|
|
||||||
xBC_conv = silu(xBC_conv)
|
|
||||||
|
|
||||||
# Split xBC
|
|
||||||
x_i, B_i, C_i = mx.split(
|
|
||||||
xBC_conv,
|
|
||||||
[d_inner, d_inner + d_state],
|
|
||||||
axis=-1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Apply SSM step
|
|
||||||
A = -mx.exp(self.A_log) # (n_heads,)
|
|
||||||
dA = mx.exp(dt_heads * A) # (batch, n_heads)
|
|
||||||
|
|
||||||
# Reshape x for heads
|
|
||||||
x_i = x_i.reshape(batch, self.n_heads, self.d_head)
|
|
||||||
|
|
||||||
# Reshape B and C for SSM with correct dimensions
|
|
||||||
state_per_head = d_state // self.n_heads
|
|
||||||
B_i_reshaped = B_i.reshape(batch, self.n_heads, state_per_head)
|
|
||||||
C_i_reshaped = C_i.reshape(batch, self.n_heads, state_per_head)
|
|
||||||
|
|
||||||
# Calculate dBx with the correctly shaped B
|
|
||||||
dBx = mx.einsum("bhn,bhp->bhpn", B_i_reshaped, x_i * mx.expand_dims(dt_heads, -1))
|
|
||||||
|
|
||||||
# Update SSM state
|
|
||||||
ssm_state = ssm_state * mx.reshape(dA, (batch, self.n_heads, 1, 1)) + dBx
|
|
||||||
|
|
||||||
# Calculate output with the correctly shaped C
|
|
||||||
y_i = mx.einsum("bhpn,bhn->bhp", ssm_state, C_i_reshaped)
|
|
||||||
|
|
||||||
# Apply D and reshape
|
|
||||||
y_i = y_i + x_i * mx.reshape(self.D, (1, self.n_heads, 1))
|
|
||||||
|
|
||||||
# Reshape y
|
|
||||||
y_i = y_i.reshape(batch, d_inner)
|
|
||||||
|
|
||||||
# Apply norm and gating (SwiGLU-like activation)
|
|
||||||
y_i = self.norm(y_i) # Just normalize without gating
|
|
||||||
y_i = y_i * nn.sigmoid(z[:, i]) # Apply gating separately
|
|
||||||
|
|
||||||
# Final projection
|
|
||||||
y_i = self.out_proj(y_i)
|
|
||||||
|
|
||||||
outputs.append(y_i)
|
|
||||||
|
|
||||||
# Stack outputs along sequence dimension
|
|
||||||
y = mx.stack(outputs, axis=1) # (batch, seqlen, d_model)
|
|
||||||
|
|
||||||
# Update cache
|
|
||||||
cache[0] = conv_state
|
|
||||||
cache[1] = ssm_state
|
|
||||||
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
class ResidualBlock(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.residual_in_fp32 = args.residual_in_fp32
|
|
||||||
self.mixer = Mamba2Block(args)
|
|
||||||
self.norm = nn.RMSNorm(args.hidden_size)
|
|
||||||
|
|
||||||
def __call__(self, x: mx.array, cache):
|
|
||||||
if self.residual_in_fp32:
|
|
||||||
x = x.astype(mx.float32)
|
|
||||||
normed = self.norm(x)
|
|
||||||
output = self.mixer(normed, cache)
|
|
||||||
return output + x
|
|
||||||
|
|
||||||
|
|
||||||
class Mamba2(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.args = args
|
|
||||||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
||||||
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
|
||||||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
||||||
|
|
||||||
def __call__(self, x: mx.array, cache):
|
|
||||||
x = self.embeddings(x)
|
|
||||||
if cache is None:
|
|
||||||
cache = [None] * len(self.layers)
|
|
||||||
|
|
||||||
hidden = x
|
|
||||||
for layer, c in zip(self.layers, cache):
|
|
||||||
hidden = layer(hidden, c)
|
|
||||||
return self.norm_f(hidden)
|
|
||||||
|
|
||||||
|
|
||||||
class Model(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.args = args
|
|
||||||
self.model_type = args.model_type
|
|
||||||
self.backbone = Mamba2(args)
|
|
||||||
|
|
||||||
if not args.tie_word_embeddings:
|
|
||||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
||||||
|
|
||||||
def __call__(self, inputs: mx.array, cache=None):
|
|
||||||
hidden = self.backbone(inputs, cache)
|
|
||||||
|
|
||||||
if self.args.tie_word_embeddings:
|
|
||||||
logits = self.backbone.embeddings.as_linear(hidden)
|
|
||||||
else:
|
|
||||||
logits = self.lm_head(hidden)
|
|
||||||
|
|
||||||
return logits
|
|
||||||
|
|
||||||
def make_cache(self):
|
|
||||||
return [MambaCache() for _ in range(len(self.layers))]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def layers(self):
|
|
||||||
return self.backbone.layers
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
########################################################
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
import math
|
|
||||||
from dataclasses import dataclass, field
|
|
||||||
from typing import Tuple, Union
|
|
||||||
import mlx.core as mx
|
|
||||||
import mlx.nn as nn
|
|
||||||
|
|
||||||
from .base import BaseModelArgs
|
|
||||||
from .cache import MambaCache
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class ModelArgs(BaseModelArgs):
|
|
||||||
model_type: str
|
|
||||||
num_heads: int
|
|
||||||
head_dim: int
|
|
||||||
vocab_size: int
|
|
||||||
hidden_size: int
|
|
||||||
state_size: int
|
|
||||||
num_hidden_layers: int
|
|
||||||
layer_norm_epsilon: float
|
|
||||||
expand: int
|
|
||||||
conv_kernel: int
|
|
||||||
n_groups: int
|
|
||||||
use_bias: bool
|
|
||||||
use_conv_bias: bool
|
|
||||||
initializer_range: float
|
|
||||||
residual_in_fp32: bool
|
|
||||||
chunk_size: int
|
|
||||||
tie_word_embeddings: bool
|
|
||||||
time_step_limit: Tuple[float, float]
|
|
||||||
time_step_rank: Union[int, str]
|
|
||||||
time_step_min: float
|
|
||||||
time_step_max: float
|
|
||||||
time_step_floor: float
|
|
||||||
norm_before_gate: bool = True
|
|
||||||
|
|
||||||
def __post_init__(self):
|
|
||||||
if not hasattr(self, "intermediate_size"):
|
|
||||||
self.intermediate_size = int(self.expand * self.hidden_size)
|
|
||||||
if not hasattr(self, "head_dim"):
|
|
||||||
self.head_dim = self.hidden_size // self.num_heads
|
|
||||||
if self.time_step_rank == "auto":
|
|
||||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
|
||||||
|
|
||||||
|
|
||||||
def segsum(x):
|
|
||||||
"""Stable segment sum calculation.
|
|
||||||
|
|
||||||
`exp(segsum(A))` produces a 1-semiseparable matrix, which is equivalent to a scalar SSM.
|
|
||||||
"""
|
|
||||||
T = x.shape[-1]
|
|
||||||
x = mx.expand_dims(x, -1)
|
|
||||||
x = mx.repeat(x, T, axis=-1)
|
|
||||||
mask = mx.tril(mx.ones((T, T), dtype=mx.bool_), k=-1)
|
|
||||||
x = mx.where(mask, x, 0)
|
|
||||||
x_segsum = mx.cumsum(x, axis=-2)
|
|
||||||
mask = mx.tril(mx.ones((T, T), dtype=mx.bool_), k=0)
|
|
||||||
x_segsum = mx.where(mask, x_segsum, -mx.inf)
|
|
||||||
return x_segsum
|
|
||||||
|
|
||||||
def ssd(x, A, B, C, chunk_size, initial_states=None):
|
|
||||||
"""Structured State Space Duality (SSD) - the core of Mamba-2
|
|
||||||
|
|
||||||
Arguments
|
|
||||||
x: (batch, seqlen, n_heads, d_head)
|
|
||||||
A: (batch, seqlen, n_heads)
|
|
||||||
B: (batch, seqlen, n_heads, d_state)
|
|
||||||
C: (batch, seqlen, n_heads, d_state)
|
|
||||||
|
|
||||||
Return
|
|
||||||
y: (batch, seqlen, n_heads, d_head)
|
|
||||||
final_state: final state for inference
|
|
||||||
"""
|
|
||||||
assert x.shape[1] % chunk_size == 0
|
|
||||||
|
|
||||||
# Rearrange into chunks
|
|
||||||
def rearrange_to_chunks(m):
|
|
||||||
shape = list(m.shape)
|
|
||||||
shape[1:2] = [shape[1] // chunk_size, chunk_size]
|
|
||||||
return m.reshape(shape)
|
|
||||||
|
|
||||||
x_chunked = rearrange_to_chunks(x)
|
|
||||||
A_chunked = rearrange_to_chunks(A)
|
|
||||||
B_chunked = rearrange_to_chunks(B)
|
|
||||||
C_chunked = rearrange_to_chunks(C)
|
|
||||||
|
|
||||||
# Transpose A for easier cumsum
|
|
||||||
A_chunked = mx.transpose(A_chunked, (0, 3, 1, 2)) # b c l h -> b h c l
|
|
||||||
A_cumsum = mx.cumsum(A_chunked, axis=-1)
|
|
||||||
|
|
||||||
# 1. Compute the output for each intra-chunk (diagonal blocks)
|
|
||||||
L = mx.exp(segsum(A_chunked))
|
|
||||||
Y_diag = mx.einsum("bclhn,bcshn,bhcls,bcshp->bclhp", C_chunked, B_chunked, L, x_chunked)
|
|
||||||
|
|
||||||
# 2. Compute the state for each intra-chunk
|
|
||||||
decay_states = mx.exp(A_cumsum[:, :, :, -1:] - A_cumsum)
|
|
||||||
states = mx.einsum("bclhn,bhcl,bclhp->bchpn", B_chunked, decay_states, x_chunked)
|
|
||||||
|
|
||||||
# 3. Compute the inter-chunk SSM recurrence
|
|
||||||
if initial_states is None:
|
|
||||||
initial_states = mx.zeros_like(states[:, :1])
|
|
||||||
states = mx.concatenate([initial_states, states], axis=1)
|
|
||||||
|
|
||||||
A_cumsum_last = A_cumsum[:, :, :, -1]
|
|
||||||
A_cumsum_padded = mx.pad(A_cumsum_last, [(0, 0), (0, 0), (1, 0)])
|
|
||||||
decay_chunk = mx.exp(segsum(A_cumsum_padded))
|
|
||||||
new_states = mx.einsum("bhzc,bchpn->bzhpn", decay_chunk, states)
|
|
||||||
states, final_state = new_states[:, :-1], new_states[:, -1]
|
|
||||||
|
|
||||||
# 4. Compute state -> output conversion per chunk
|
|
||||||
state_decay_out = mx.exp(A_cumsum)
|
|
||||||
Y_off = mx.einsum("bclhn,bchpn,bhcl->bclhp", C_chunked, states, state_decay_out)
|
|
||||||
|
|
||||||
# Add output of intra-chunk and inter-chunk terms
|
|
||||||
Y_combined = Y_diag + Y_off
|
|
||||||
|
|
||||||
# Reshape back to original sequence shape
|
|
||||||
batch, chunks, chunk_len, heads, head_dim = Y_combined.shape
|
|
||||||
Y = Y_combined.reshape(batch, chunks * chunk_len, heads, head_dim)
|
|
||||||
|
|
||||||
return Y, final_state
|
|
||||||
|
|
||||||
def silu(x):
|
|
||||||
"""Applies the Sigmoid Linear Unit (SiLU), element-wise."""
|
|
||||||
return x * mx.sigmoid(x)
|
|
||||||
|
|
||||||
|
|
||||||
class Mamba2Block(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.args = args
|
|
||||||
self.d_model = args.hidden_size
|
|
||||||
self.d_state = args.state_size
|
|
||||||
self.d_conv = args.conv_kernel
|
|
||||||
self.expand = args.expand
|
|
||||||
self.d_inner = int(self.expand * self.d_model)
|
|
||||||
self.n_groups = args.n_groups
|
|
||||||
self.n_heads = args.num_heads
|
|
||||||
self.d_head = self.d_inner // self.n_heads
|
|
||||||
self.chunk_size = args.chunk_size
|
|
||||||
|
|
||||||
d_in_proj = 2 * self.d_inner + 2 * self.n_groups * self.d_state + self.n_heads
|
|
||||||
self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=args.use_bias)
|
|
||||||
|
|
||||||
self.dt_bias = mx.random.normal((self.n_heads,)) * args.initializer_range
|
|
||||||
self.A_log = mx.random.normal((self.n_heads,)) * args.initializer_range
|
|
||||||
self.D = mx.random.normal((self.n_heads,)) * args.initializer_range
|
|
||||||
|
|
||||||
# Use standard Conv1d with groups for depthwise convolution
|
|
||||||
conv_dim = self.d_inner + 2 * self.n_groups * self.d_state
|
|
||||||
self.conv1d = nn.Conv1d(
|
|
||||||
in_channels=conv_dim,
|
|
||||||
out_channels=conv_dim,
|
|
||||||
kernel_size=self.d_conv,
|
|
||||||
groups=conv_dim,
|
|
||||||
padding=self.d_conv-1,
|
|
||||||
bias=args.use_conv_bias
|
|
||||||
)
|
|
||||||
|
|
||||||
self.norm = nn.RMSNorm(self.d_inner, eps=args.layer_norm_epsilon)
|
|
||||||
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=args.use_bias)
|
|
||||||
|
|
||||||
def __call__(self, u, cache=None):
|
|
||||||
"""
|
|
||||||
Arguments
|
|
||||||
u: (batch, seqlen, d_model) input
|
|
||||||
cache: Optional tuple of (conv_state, ssm_state) for inference
|
|
||||||
|
|
||||||
Return (y, cache)
|
|
||||||
y: (batch, seqlen, d_model) output
|
|
||||||
cache: updated tuple of (conv_state, ssm_state) for inference
|
|
||||||
"""
|
|
||||||
if cache is not None:
|
|
||||||
return self.step(u, cache)
|
|
||||||
|
|
||||||
# Initialize cache if needed
|
|
||||||
if cache is None:
|
|
||||||
cache = [None, None] # Initialize with None values
|
|
||||||
|
|
||||||
# Compute projections
|
|
||||||
zxbcdt = self.in_proj(u)
|
|
||||||
|
|
||||||
# Split projections
|
|
||||||
d_inner = self.d_inner
|
|
||||||
d_state = self.n_groups * self.d_state
|
|
||||||
|
|
||||||
z, xBC, dt = mx.split(
|
|
||||||
zxbcdt,
|
|
||||||
[d_inner, d_inner + 2 * d_state],
|
|
||||||
axis=-1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Process dt with softplus
|
|
||||||
dt = mx.softplus(dt + self.dt_bias) # (batch, seqlen, n_heads)
|
|
||||||
|
|
||||||
# Apply convolution to xBC
|
|
||||||
xBC_transposed = mx.transpose(xBC, (0, 2, 1)) # (batch, d, seqlen)
|
|
||||||
xBC_conv = self.conv1d(xBC_transposed)
|
|
||||||
xBC_conv = mx.transpose(xBC_conv, (0, 2, 1)) # (batch, seqlen, d)
|
|
||||||
xBC = silu(xBC_conv[:, :u.shape[1], :]) # Ensure we only keep seqlen elements
|
|
||||||
|
|
||||||
# Split xBC into x, B, C
|
|
||||||
x, B, C = mx.split(
|
|
||||||
xBC,
|
|
||||||
[d_inner, d_inner + d_state],
|
|
||||||
axis=-1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Reshape x for heads
|
|
||||||
batch, seqlen = x.shape[0], x.shape[1]
|
|
||||||
x_reshaped = x.reshape(batch, seqlen, self.n_heads, self.d_head)
|
|
||||||
|
|
||||||
# Reshape B and C for SSM
|
|
||||||
B = B.reshape(batch, seqlen, 1, d_state)
|
|
||||||
C = C.reshape(batch, seqlen, 1, d_state)
|
|
||||||
|
|
||||||
# Apply SSM with SSD algorithm
|
|
||||||
A = -mx.exp(self.A_log) # (n_heads,)
|
|
||||||
A_dt = A * dt # (batch, seqlen, n_heads)
|
|
||||||
|
|
||||||
y, ssm_state = ssd(
|
|
||||||
x_reshaped * mx.expand_dims(dt, -1), # Scale x by dt
|
|
||||||
A_dt,
|
|
||||||
B,
|
|
||||||
C,
|
|
||||||
self.chunk_size
|
|
||||||
)
|
|
||||||
|
|
||||||
# Apply D and reshape
|
|
||||||
y = y + x_reshaped * mx.reshape(self.D, (1, 1, self.n_heads, 1))
|
|
||||||
y = y.reshape(batch, seqlen, d_inner)
|
|
||||||
|
|
||||||
# Apply norm and gating
|
|
||||||
y = self.norm(y, z)
|
|
||||||
|
|
||||||
# Final projection
|
|
||||||
y = self.out_proj(y)
|
|
||||||
|
|
||||||
# Create cache for inference
|
|
||||||
if seqlen == 1 and cache is not None:
|
|
||||||
conv_state = mx.zeros((batch, d_inner + 2 * d_state, self.d_conv))
|
|
||||||
conv_state = mx.update_slice(conv_state, xBC.reshape(batch, -1, 1), (0, 0, self.d_conv - 1))
|
|
||||||
cache[0] = conv_state
|
|
||||||
cache[1] = ssm_state
|
|
||||||
|
|
||||||
return y
|
|
||||||
|
|
||||||
def step(self, u, cache):
|
|
||||||
"""Take an inference step for the current input and cache
|
|
||||||
|
|
||||||
Arguments
|
|
||||||
u: (batch, seqlen, d_model) - can be multiple tokens
|
|
||||||
cache: tuple of (conv_state, ssm_state)
|
|
||||||
|
|
||||||
Return (y, cache)
|
|
||||||
y: (batch, seqlen, d_model)
|
|
||||||
cache: updated cache object
|
|
||||||
"""
|
|
||||||
batch, seqlen = u.shape[0], u.shape[1]
|
|
||||||
|
|
||||||
# Initialize cache if it's None
|
|
||||||
if cache[0] is None or cache[1] is None:
|
|
||||||
d_state = self.n_groups * self.d_state
|
|
||||||
conv_dim = self.d_inner + 2 * d_state
|
|
||||||
conv_state = mx.zeros((batch, conv_dim, self.d_conv))
|
|
||||||
|
|
||||||
# Fix: use correct state size per head
|
|
||||||
state_per_head = d_state // self.n_heads
|
|
||||||
ssm_state = mx.zeros((batch, self.n_heads, self.d_head, state_per_head))
|
|
||||||
else:
|
|
||||||
conv_state, ssm_state = cache[0], cache[1]
|
|
||||||
|
|
||||||
# Project input
|
|
||||||
zxbcdt = self.in_proj(u) # (batch, seqlen, d_in_proj)
|
|
||||||
|
|
||||||
# Split projections
|
|
||||||
d_inner = self.d_inner
|
|
||||||
d_state = self.n_groups * self.d_state
|
|
||||||
|
|
||||||
z, xBC, dt = mx.split(
|
|
||||||
zxbcdt,
|
|
||||||
[d_inner, d_inner + 2 * d_state],
|
|
||||||
axis=-1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Process dt with softplus once for all tokens
|
|
||||||
dt_heads = dt.reshape(batch, seqlen, -1)[:, :, :self.n_heads]
|
|
||||||
dt_heads = nn.softplus(dt_heads + self.dt_bias.reshape(1, 1, -1))
|
|
||||||
|
|
||||||
# Pre-compute dA for all tokens
|
|
||||||
A = -mx.exp(self.A_log) # (n_heads,)
|
|
||||||
dA = mx.exp(dt_heads * A.reshape(1, 1, -1)) # (batch, seqlen, n_heads)
|
|
||||||
|
|
||||||
# Get convolution weights
|
|
||||||
weight = self.conv1d.weight # shape: (out_channels, 1, kernel_size)
|
|
||||||
bias = self.conv1d.bias if self.args.use_conv_bias else None
|
|
||||||
|
|
||||||
# Process each token through the convolution sequentially
|
|
||||||
outputs = []
|
|
||||||
for i in range(seqlen):
|
|
||||||
# Get current token's input
|
|
||||||
xBC_i = xBC[:, i] # (batch, d_inner + 2*d_state)
|
|
||||||
|
|
||||||
# Update convolution state
|
|
||||||
conv_state = mx.roll(conv_state, shift=-1, axis=-1)
|
|
||||||
|
|
||||||
# Update the last column of conv_state
|
|
||||||
conv_state = mx.slice_update(
|
|
||||||
conv_state,
|
|
||||||
xBC_i.reshape(batch, -1, 1),
|
|
||||||
mx.array([0, 0, self.d_conv - 1]),
|
|
||||||
axes=(0, 1, 2)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Apply convolution step - manually handle the depthwise conv
|
|
||||||
# For a depthwise conv, we need to process each channel separately
|
|
||||||
# conv_state shape: (batch, channels, kernel_size)
|
|
||||||
# weight shape: (channels, 1, kernel_size) for depthwise conv
|
|
||||||
|
|
||||||
# Reshape weight to match conv_state for element-wise multiplication
|
|
||||||
# and then sum along the kernel dimension
|
|
||||||
weight_reshaped = weight.reshape(conv_state.shape[1], self.d_conv)
|
|
||||||
xBC_conv = mx.sum(conv_state * weight_reshaped.reshape(1, -1, self.d_conv), axis=-1)
|
|
||||||
|
|
||||||
if bias is not None:
|
|
||||||
xBC_conv = xBC_conv + bias
|
|
||||||
|
|
||||||
xBC_conv = silu(xBC_conv)
|
|
||||||
|
|
||||||
# Split xBC
|
|
||||||
x_i, BC_rest = mx.split(xBC_conv, [d_inner], axis=-1)
|
|
||||||
B_i, C_i = mx.split(BC_rest, [d_state], axis=-1)
|
|
||||||
|
|
||||||
# Reshape x for heads
|
|
||||||
x_i = x_i.reshape(batch, self.n_heads, self.d_head)
|
|
||||||
|
|
||||||
# Reshape B and C for SSM
|
|
||||||
state_per_head = d_state // self.n_heads
|
|
||||||
B_i_reshaped = B_i.reshape(batch, self.n_heads, state_per_head)
|
|
||||||
C_i_reshaped = C_i.reshape(batch, self.n_heads, state_per_head)
|
|
||||||
|
|
||||||
# Get current token's dt and dA
|
|
||||||
dt_i = dt_heads[:, i] # (batch, n_heads)
|
|
||||||
dA_i = dA[:, i] # (batch, n_heads)
|
|
||||||
|
|
||||||
# Calculate dBx
|
|
||||||
dBx = mx.einsum("bhn,bhp->bhpn", B_i_reshaped, x_i * mx.expand_dims(dt_i, -1))
|
|
||||||
|
|
||||||
# Update SSM state
|
|
||||||
ssm_state = ssm_state * mx.reshape(dA_i, (batch, self.n_heads, 1, 1)) + dBx
|
|
||||||
|
|
||||||
# Calculate output with the correctly shaped C
|
|
||||||
y_i = mx.einsum("bhpn,bhn->bhp", ssm_state, C_i_reshaped)
|
|
||||||
|
|
||||||
# Apply D and reshape
|
|
||||||
y_i = y_i + x_i * self.D.reshape(1, self.n_heads, 1)
|
|
||||||
|
|
||||||
# Reshape y
|
|
||||||
y_i = y_i.reshape(batch, d_inner)
|
|
||||||
|
|
||||||
# Apply norm and gating
|
|
||||||
y_i = self.norm(y_i) * nn.sigmoid(z[:, i])
|
|
||||||
|
|
||||||
# Final projection
|
|
||||||
y_i = self.out_proj(y_i)
|
|
||||||
|
|
||||||
outputs.append(y_i)
|
|
||||||
|
|
||||||
# Stack outputs along sequence dimension
|
|
||||||
y = mx.stack(outputs, axis=1)
|
|
||||||
|
|
||||||
# Update cache
|
|
||||||
cache[0] = conv_state
|
|
||||||
cache[1] = ssm_state
|
|
||||||
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
class ResidualBlock(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.residual_in_fp32 = args.residual_in_fp32
|
|
||||||
self.mixer = Mamba2Block(args)
|
|
||||||
self.norm = nn.RMSNorm(args.hidden_size)
|
|
||||||
|
|
||||||
def __call__(self, x: mx.array, cache):
|
|
||||||
if self.residual_in_fp32:
|
|
||||||
x = x.astype(mx.float32)
|
|
||||||
normed = self.norm(x)
|
|
||||||
output = self.mixer(normed, cache)
|
|
||||||
return output + x
|
|
||||||
|
|
||||||
|
|
||||||
class Mamba2(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.args = args
|
|
||||||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
||||||
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
|
||||||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
||||||
|
|
||||||
def __call__(self, x: mx.array, cache):
|
|
||||||
x = self.embeddings(x)
|
|
||||||
if cache is None:
|
|
||||||
cache = [None] * len(self.layers)
|
|
||||||
|
|
||||||
hidden = x
|
|
||||||
for layer, c in zip(self.layers, cache):
|
|
||||||
hidden = layer(hidden, c)
|
|
||||||
return self.norm_f(hidden)
|
|
||||||
|
|
||||||
|
|
||||||
class Model(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.args = args
|
|
||||||
self.model_type = args.model_type
|
|
||||||
self.backbone = Mamba2(args)
|
|
||||||
|
|
||||||
if not args.tie_word_embeddings:
|
|
||||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
||||||
|
|
||||||
def __call__(self, inputs: mx.array, cache=None):
|
|
||||||
hidden = self.backbone(inputs, cache)
|
|
||||||
|
|
||||||
if self.args.tie_word_embeddings:
|
|
||||||
logits = self.backbone.embeddings.as_linear(hidden)
|
|
||||||
else:
|
|
||||||
logits = self.lm_head(hidden)
|
|
||||||
|
|
||||||
return logits
|
|
||||||
|
|
||||||
def make_cache(self):
|
|
||||||
return [MambaCache() for _ in range(len(self.layers))]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def layers(self):
|
|
||||||
return self.backbone.layers
|
|
@ -42,29 +42,6 @@ class ModelArgs(BaseModelArgs):
|
|||||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||||
|
|
||||||
|
|
||||||
class DepthWiseConv1d(nn.Module):
|
|
||||||
def __init__(self, channels, kernel_size, bias=True, padding=0):
|
|
||||||
super().__init__()
|
|
||||||
self.channels = channels
|
|
||||||
self.kernel_size = kernel_size
|
|
||||||
self.padding = padding
|
|
||||||
self.weight = mx.random.normal((channels, kernel_size, 1))
|
|
||||||
self.bias = mx.zeros((channels,)) if bias else None
|
|
||||||
|
|
||||||
def __call__(self, x, cache=None):
|
|
||||||
B, L, C = x.shape
|
|
||||||
_, K, _ = self.weight.shape
|
|
||||||
|
|
||||||
if cache is not None:
|
|
||||||
x = mx.concatenate([cache, x], axis=1)
|
|
||||||
else:
|
|
||||||
x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)])
|
|
||||||
|
|
||||||
y = mx.conv_general(x, self.weight, groups=C)
|
|
||||||
y = y + self.bias
|
|
||||||
return y, x[:, -K + 1:, :]
|
|
||||||
|
|
||||||
|
|
||||||
def ssd_forward_attn(
|
def ssd_forward_attn(
|
||||||
x: mx.array,
|
x: mx.array,
|
||||||
dt: mx.array,
|
dt: mx.array,
|
||||||
@ -118,10 +95,8 @@ def ssd_forward_attn(
|
|||||||
|
|
||||||
# Initialize or update state
|
# Initialize or update state
|
||||||
if prev_state is not None:
|
if prev_state is not None:
|
||||||
# Simply use the previous state if it exists
|
decayed_prev_state = prev_state * decay[:, :, -1, :].reshape(b, h, 1, 1)
|
||||||
# This is a simplified approach - just use the new state
|
next_state = decayed_prev_state + new_state_contribution
|
||||||
# In a real implementation, you'd want to properly update based on your SSM formulation
|
|
||||||
next_state = new_state_contribution
|
|
||||||
else:
|
else:
|
||||||
next_state = new_state_contribution
|
next_state = new_state_contribution
|
||||||
|
|
||||||
@ -169,11 +144,13 @@ class Mamba2Block(nn.Module):
|
|||||||
self.A_log = mx.random.normal((self.n_heads,)) * args.initializer_range
|
self.A_log = mx.random.normal((self.n_heads,)) * args.initializer_range
|
||||||
self.D = mx.random.normal((self.n_heads,)) * args.initializer_range
|
self.D = mx.random.normal((self.n_heads,)) * args.initializer_range
|
||||||
|
|
||||||
self.conv1d = DepthWiseConv1d(
|
conv_channels = self.d_inner + 2 * self.n_groups * self.d_state
|
||||||
channels=self.d_inner + 2 * self.n_groups * self.d_state,
|
self.conv1d = nn.Conv1d(
|
||||||
|
in_channels=conv_channels,
|
||||||
|
out_channels=conv_channels,
|
||||||
kernel_size=self.d_conv,
|
kernel_size=self.d_conv,
|
||||||
bias=args.use_conv_bias,
|
groups=conv_channels,
|
||||||
padding=self.d_conv-1
|
padding=self.d_conv - 1,
|
||||||
)
|
)
|
||||||
|
|
||||||
self.norm = nn.RMSNorm(self.d_inner, eps=args.layer_norm_epsilon)
|
self.norm = nn.RMSNorm(self.d_inner, eps=args.layer_norm_epsilon)
|
||||||
@ -195,9 +172,35 @@ class Mamba2Block(nn.Module):
|
|||||||
axis=-1
|
axis=-1
|
||||||
)
|
)
|
||||||
|
|
||||||
xBC, conv_state = self.conv1d(xBC, conv_state)
|
# Handle convolution with caching
|
||||||
xBC = xBC * mx.sigmoid(xBC)
|
xBC = mx.swapaxes(xBC, 1, 2) # [B, L, C] -> [B, C, L]
|
||||||
xBC = xBC[:, :seq_len, :]
|
|
||||||
|
if conv_state is not None and seq_len > 0:
|
||||||
|
# Concatenate cached state with current input
|
||||||
|
xBC_with_cache = mx.concatenate([conv_state, xBC], axis=2)
|
||||||
|
elif seq_len > 0:
|
||||||
|
# For the first call, pad with zeros
|
||||||
|
padding = mx.zeros((batch_size, xBC.shape[1], self.d_conv - 1))
|
||||||
|
xBC_with_cache = mx.concatenate([padding, xBC], axis=2)
|
||||||
|
else:
|
||||||
|
xBC_with_cache = conv_state if conv_state is not None else mx.zeros((batch_size, xBC.shape[1], 0))
|
||||||
|
|
||||||
|
# Save state for next iteration
|
||||||
|
if seq_len > 0:
|
||||||
|
next_conv_state = xBC_with_cache[:, :, -(self.d_conv - 1):]
|
||||||
|
else:
|
||||||
|
next_conv_state = conv_state
|
||||||
|
|
||||||
|
# Apply regular convolution using nn.Conv1d
|
||||||
|
if seq_len > 0:
|
||||||
|
# Use the standard Conv1d module for the actual computation
|
||||||
|
xBC_conv = self.conv1d(xBC_with_cache)
|
||||||
|
xBC = xBC_conv[:, :, -seq_len:] # Take only the relevant output positions
|
||||||
|
xBC = mx.swapaxes(xBC, 1, 2) # [B, C, L] -> [B, L, C]
|
||||||
|
xBC = xBC * mx.sigmoid(xBC)
|
||||||
|
else:
|
||||||
|
# Handle empty sequence case
|
||||||
|
xBC = mx.swapaxes(xBC, 1, 2) # [B, C, L] -> [B, L, C]
|
||||||
|
|
||||||
x, B, C = mx.split(
|
x, B, C = mx.split(
|
||||||
xBC,
|
xBC,
|
||||||
@ -209,7 +212,6 @@ class Mamba2Block(nn.Module):
|
|||||||
B = mx.reshape(B, (batch_size, seq_len, self.n_groups, -1))
|
B = mx.reshape(B, (batch_size, seq_len, self.n_groups, -1))
|
||||||
C = mx.reshape(C, (batch_size, seq_len, self.n_groups, -1))
|
C = mx.reshape(C, (batch_size, seq_len, self.n_groups, -1))
|
||||||
|
|
||||||
A = -mx.exp(self.A_log)
|
|
||||||
y, next_ssm_state = ssd_forward_attn(
|
y, next_ssm_state = ssd_forward_attn(
|
||||||
x=x,
|
x=x,
|
||||||
dt=dt,
|
dt=dt,
|
||||||
@ -232,7 +234,7 @@ class Mamba2Block(nn.Module):
|
|||||||
|
|
||||||
y = self.out_proj(y)
|
y = self.out_proj(y)
|
||||||
|
|
||||||
cache[0] = conv_state
|
cache[0] = next_conv_state
|
||||||
cache[1] = next_ssm_state
|
cache[1] = next_ssm_state
|
||||||
return y
|
return y
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user