Changed the switch to set opt_class

This commit is contained in:
Goekdeniz-Guelmez 2025-03-05 09:40:36 +01:00
parent 60df71bcbc
commit 64ed426518

View File

@ -45,23 +45,14 @@ CONFIG_DEFAULTS = {
"fine_tune_type": "lora",
"optimizer": "adam",
"optimizer_config": {
"adam": {
"betas": [0.9, 0.999],
"eps": 1e-8,
"bias_correction": False
},
"adamw": {
"betas": [0.9, 0.999],
"eps": 1e-8,
"weight_decay": 0.01,
"bias_correction": False
},
"adam": {"bias_correction": False},
"adamw": {"weight_decay": 0.01, "bias_correction": False},
"muon": {
"momentum": 0.95,
"weight_decay": 0.01,
"nesterov": True,
"ns_steps": 5
}
"ns_steps": 5,
},
},
"data": "data/",
"seed": 0,
@ -116,7 +107,7 @@ def build_parser():
help="Type of fine-tuning to perform: lora, dora, or full.",
)
parser.add_argument(
'--optimizer',
"--optimizer",
type=str,
choices=["adam", "adamw", "muon"],
default="adam",
@ -257,36 +248,21 @@ def train_model(
# Initialize the selected optimizer
lr = build_schedule(args.lr_schedule) if args.lr_schedule else args.learning_rate
optimizer_name = args.optimizer.lower()
optimizer_config = args.optimizer_config.get(optimizer_name, {})
if optimizer_name == "adam":
opt = optim.Adam(
learning_rate=lr,
betas=optimizer_config.get("betas", [0.9, 0.999]),
eps=optimizer_config.get("eps", 1e-8),
bias_correction=optimizer_config.get("bias_correction", False)
)
opt_class = optim.Adam
elif optimizer_name == "adamw":
opt = optim.AdamW(
learning_rate=lr,
betas=optimizer_config.get("betas", [0.9, 0.999]),
eps=optimizer_config.get("eps", 1e-8),
weight_decay=optimizer_config.get("weight_decay", 0.01),
bias_correction=optimizer_config.get("bias_correction", False)
)
opt_class = optim.AdamW
elif optimizer_name == "muon":
opt = optim.Muon(
learning_rate=lr,
momentum=optimizer_config.get("momentum", 0.95),
weight_decay=optimizer_config.get("weight_decay", 0.01),
nesterov=optimizer_config.get("nesterov", True),
ns_steps=optimizer_config.get("ns_steps", 5)
)
opt_class = optim.Muon
else:
raise ValueError(f"Unsupported optimizer: {optimizer_name}")
opt = opt_class(learning_rate=lr, **optimizer_config)
# Train model
train(
model=model,