Merge remote-tracking branch 'upstream/main' into mitmul/add-plamo2-1b-support

This commit is contained in:
Shunta Saito 2025-02-24 13:37:43 +09:00
commit 675c322978
6 changed files with 35 additions and 50 deletions

View File

@ -121,7 +121,7 @@ if __name__ == "__main__":
mlx_path.mkdir(parents=True, exist_ok=True)
print("[INFO] Loading")
torch_weights = torch.load(torch_path / "pytorch_model.bin")
torch_weights = torch.load(torch_path / "pytorch_model.bin", weights_only=True)
print("[INFO] Converting")
mlx_weights = {
k: torch_to_mx(v, dtype=args.dtype) for k, v in torch_weights.items()

View File

@ -1,3 +1,3 @@
# Copyright © 2023-2024 Apple Inc.
__version__ = "0.21.0"
__version__ = "0.21.5"

View File

@ -181,8 +181,14 @@ def train_model(
training_callback: TrainingCallback = None,
):
model.freeze()
if args.num_layers > len(model.layers):
raise ValueError(
f"Requested to train {args.num_layers} layers "
f"but the model only has {len(model.layers)} layers."
)
if args.fine_tune_type == "full":
for l in model.layers[-min(args.num_layers, 0) :]:
for l in model.layers[-max(args.num_layers, 0) :]:
l.unfreeze()
elif args.fine_tune_type in ["lora", "dora"]:
# Convert linear layers to lora/dora layers and unfreeze in the process

View File

@ -52,11 +52,6 @@ def linear_to_lora_layers(
use_dora (bool): If True, uses DoRA instead of LoRA.
Default: ``False``
"""
if num_layers > len(model.layers):
raise ValueError(
f"Requested {num_layers} LoRA layers "
f"but the model only has {len(model.layers)} layers."
)
def to_lora(layer):
if isinstance(layer, (nn.Linear, nn.QuantizedLinear)):
@ -154,7 +149,7 @@ def linear_to_lora_layers(
else:
raise ValueError(f"Lora does not support {model.model_type}")
for l in model.layers[-min(num_layers, 0) :]:
for l in model.layers[-max(num_layers, 0) :]:
lora_layers = [(k, to_lora(m)) for k, m in l.named_modules() if k in keys]
if lora_layers:
l.update_modules(tree_unflatten(lora_layers))

View File

@ -410,8 +410,7 @@ def speculative_generate_step(
for processor in logits_processors:
logits = processor(tokens, logits)
logprobs = logits - mx.logsumexp(logits, keepdims=True)
logprobs = logprobs.squeeze(0)
logprobs = logits - mx.logsumexp(logits, axis=-1, keepdims=True)
y = sampler(logprobs)
return y, logprobs
@ -430,16 +429,14 @@ def speculative_generate_step(
prev_tokens = (
mx.concat([prev_tokens, y]) if prev_tokens is not None else y
)
y, logprobs = _process_and_sample(
prev_tokens, logits[:, i : i + 1, :]
)
y, logprobs = _process_and_sample(prev_tokens, logits[:, i, :])
out_y.append(y)
out_logprobs.append(logprobs)
return mx.concatenate(out_y, axis=0), mx.concatenate(
out_logprobs, axis=0
)
else:
return _process_and_sample(None, logits)
return _process_and_sample(None, logits.squeeze(0))
def _prefill(model, cache, y):
while y.size > prefill_step_size:
@ -477,13 +474,9 @@ def speculative_generate_step(
num_draft = min(max_tokens - ntoks, num_draft_tokens)
draft_tokens = _draft_generate(draft_y, num_draft)
if prev_tokens is not None:
prev_tokens = prev_tokens[
: prev_tokens.size - draft_y.size - num_draft + 1
]
prev_tokens = prev_tokens[: prev_tokens.size - y.size - num_draft + 1]
y = mx.concatenate([y, draft_tokens])
tokens, logprobs = _step(model, model_cache, y, num_draft + 1)
mx.eval(tokens, draft_tokens)
draft_tokens = draft_tokens.tolist()
tokens = tokens.tolist()
@ -515,8 +508,8 @@ def speculative_generate_step(
[mx.array(draft_tokens[-1:], mx.uint32), draft_y]
)
if prev_tokens is not None and n < num_draft:
prev_tokens = prev_tokens[: -(num_draft - n)]
if prev_tokens is not None:
prev_tokens = prev_tokens[: -max(num_draft - n, 1)]
_rewind_cache(num_draft, n)
finally:
_rewind_cache(num_draft, n)

View File

@ -8,7 +8,6 @@ import datasets
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
import numpy as np
from mlx.utils import tree_flatten
@ -40,26 +39,21 @@ class TransformerLM(nn.Module):
def to_samples(context_size, dataset):
tokens = dataset.size
window_size = context_size + 1 # include target
samples = tokens - window_size + 1
X = np.lib.stride_tricks.as_strided(
dataset,
shape=(samples, window_size),
strides=(dataset.itemsize, dataset.itemsize),
)
return X[:, :-1], X[:, 1:]
samples = dataset.size // window_size
dataset = dataset[: samples * window_size]
return mx.array(dataset.reshape(samples, -1))
def iterate_batches(batch_size, context_size, dataset):
inputs, targets = to_samples(context_size, dataset)
inputs = to_samples(context_size, dataset)
s = 0
while True:
if s == 0:
# Reset permutation:
perm = np.random.permutation(inputs.shape[0])
perm = mx.random.permutation(inputs.shape[0])
ids = perm[s : s + batch_size]
yield inputs[ids], targets[ids]
yield inputs[ids]
s += batch_size
if s >= inputs.shape[0]:
s = 0
@ -84,45 +78,42 @@ def main(args):
)
print(f"Training a transformer with {nparams / 1024**2:.3f} M parameters")
def loss_fn(model, x, y, reduce=True):
def loss_fn(model, inputs, reduction="mean"):
x, y = inputs[..., :-1], inputs[..., 1:]
logits = model(x)
losses = nn.losses.cross_entropy(logits, y)
return mx.mean(losses) if reduce else mx.mean(losses, axis=(-1, -2))
return nn.losses.cross_entropy(logits, y, reduction=reduction)
optimizer = optim.AdamW(
learning_rate=args.learning_rate, weight_decay=args.weight_decay
)
def eval_fn(dataset):
inputs, targets = map(mx.array, to_samples(context_size, dataset))
inputs = to_samples(context_size, dataset)
loss = 0
for s in range(0, targets.shape[0], batch_size):
bx, by = inputs[s : s + batch_size], targets[s : s + batch_size]
bx, by = map(mx.array, (bx, by))
losses = loss_fn(model, bx, by, reduce=False)
loss += mx.sum(losses).item()
return loss / len(targets)
for s in range(0, inputs.shape[0], batch_size):
losses = loss_fn(model, inputs[s : s + batch_size], reduction="sum")
loss += losses.item()
return loss / (inputs.size - inputs.shape[0])
state = [model.state, optimizer.state]
@partial(mx.compile, inputs=state, outputs=state)
def step(inputs, targets):
def step(inputs):
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
loss, grads = loss_and_grad_fn(model, inputs, targets)
loss, grads = loss_and_grad_fn(model, inputs)
optimizer.update(model, grads)
return loss
train_iterator = iterate_batches(batch_size, context_size, train)
losses = []
tic = time.perf_counter()
for it, (inputs, targets) in zip(range(args.num_iters), train_iterator):
inputs, targets = map(mx.array, (inputs, targets))
for it, inputs in zip(range(args.num_iters), train_iterator):
optimizer.learning_rate = min(1, it / args.lr_warmup) * args.learning_rate
loss = step(inputs, targets)
loss = step(inputs)
mx.eval(state)
losses.append(loss.item())
if (it + 1) % steps_per_report == 0:
train_loss = np.mean(losses)
train_loss = sum(losses) / len(losses)
toc = time.perf_counter()
print(
f"Iter {it + 1}: Train loss {train_loss:.3f}, "