mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00
Whisper: Add pip distribution configuration to support pip installations. (#739)
* Whisper: rename whisper to mlx_whisper * Whisper: add setup.py config for publish * Whisper: add assets data to setup config * Whisper: pre-commit for setup.py * Whisper: Update README.md * Whisper: Update README.md * nits * fix package data * nit in readme --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
4bf2eb17f2
commit
6775d6cb3f
@ -1,3 +1,5 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
|
4
whisper/MANIFEST.in
Normal file
4
whisper/MANIFEST.in
Normal file
@ -0,0 +1,4 @@
|
||||
include mlx_whisper/requirements.txt
|
||||
include mlx_whisper/assets/mel_filters.npz
|
||||
include mlx_whisper/assets/multilingual.tiktoken
|
||||
include mlx_whisper/assets/gpt2.tiktoken
|
@ -6,12 +6,6 @@ parameters.[^1]
|
||||
|
||||
### Setup
|
||||
|
||||
First, install the dependencies:
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Install [`ffmpeg`](https://ffmpeg.org/):
|
||||
|
||||
```
|
||||
@ -19,19 +13,72 @@ Install [`ffmpeg`](https://ffmpeg.org/):
|
||||
brew install ffmpeg
|
||||
```
|
||||
|
||||
Install the `mlx-whisper` package with:
|
||||
|
||||
```
|
||||
pip install mlx-whisper
|
||||
```
|
||||
|
||||
### Run
|
||||
|
||||
Transcribe audio with:
|
||||
|
||||
```python
|
||||
import mlx_whisper
|
||||
|
||||
text = mlx_whisper.transcribe(speech_file)["text"]
|
||||
```
|
||||
|
||||
The default model is "mlx-community/whisper-tiny". Choose the model by
|
||||
setting `path_or_hf_repo`. For example:
|
||||
|
||||
```python
|
||||
result = mlx_whisper.transcribe(speech_file, path_or_hf_repo="models/large")
|
||||
```
|
||||
|
||||
This will load the model contained in `models/large`. The `path_or_hf_repo` can
|
||||
also point to an MLX-style Whisper model on the Hugging Face Hub. In this case,
|
||||
the model will be automatically downloaded. A [collection of pre-converted
|
||||
Whisper
|
||||
models](https://huggingface.co/collections/mlx-community/whisper-663256f9964fbb1177db93dc)
|
||||
are in the Hugging Face MLX Community.
|
||||
|
||||
The `transcribe` function also supports word-level timestamps. You can generate
|
||||
these with:
|
||||
|
||||
```python
|
||||
output = mlx_whisper.transcribe(speech_file, word_timestamps=True)
|
||||
print(output["segments"][0]["words"])
|
||||
```
|
||||
|
||||
To see more transcription options use:
|
||||
|
||||
```
|
||||
>>> help(mlx_whisper.transcribe)
|
||||
```
|
||||
|
||||
### Converting models
|
||||
|
||||
> [!TIP]
|
||||
> Skip the conversion step by using pre-converted checkpoints from the Hugging
|
||||
> Face Hub. There are a few available in the [MLX
|
||||
> Community](https://huggingface.co/mlx-community) organization.
|
||||
|
||||
To convert a model, first download the Whisper PyTorch checkpoint and convert
|
||||
the weights to the MLX format. For example, to convert the `tiny` model use:
|
||||
To convert a model, first clone the MLX Examples repo:
|
||||
|
||||
```
|
||||
git clone https://github.com/ml-explore/mlx-examples.git
|
||||
```
|
||||
|
||||
Then run `convert.py` from `mlx-examples/whisper`. For example, to convert the
|
||||
`tiny` model use:
|
||||
|
||||
```
|
||||
python convert.py --torch-name-or-path tiny --mlx-path mlx_models/tiny
|
||||
```
|
||||
|
||||
Note you can also convert a local PyTorch checkpoint which is in the original OpenAI format.
|
||||
Note you can also convert a local PyTorch checkpoint which is in the original
|
||||
OpenAI format.
|
||||
|
||||
To generate a 4-bit quantized model, use `-q`. For a full list of options:
|
||||
|
||||
@ -53,38 +100,4 @@ python convert.py --torch-name-or-path ${model} --dtype float32 --mlx-path mlx_m
|
||||
python convert.py --torch-name-or-path ${model} -q --q_bits 4 --mlx-path mlx_models/${model}_quantized_4bits
|
||||
```
|
||||
|
||||
### Run
|
||||
|
||||
Transcribe audio with:
|
||||
|
||||
```python
|
||||
import whisper
|
||||
|
||||
text = whisper.transcribe(speech_file)["text"]
|
||||
```
|
||||
|
||||
Choose the model by setting `path_or_hf_repo`. For example:
|
||||
|
||||
```python
|
||||
result = whisper.transcribe(speech_file, path_or_hf_repo="models/large")
|
||||
```
|
||||
|
||||
This will load the model contained in `models/large`. The `path_or_hf_repo`
|
||||
can also point to an MLX-style Whisper model on the Hugging Face Hub. In this
|
||||
case, the model will be automatically downloaded.
|
||||
|
||||
The `transcribe` function also supports word-level timestamps. You can generate
|
||||
these with:
|
||||
|
||||
```python
|
||||
output = whisper.transcribe(speech_file, word_timestamps=True)
|
||||
print(output["segments"][0]["words"])
|
||||
```
|
||||
|
||||
To see more transcription options use:
|
||||
|
||||
```
|
||||
>>> help(whisper.transcribe)
|
||||
```
|
||||
|
||||
[^1]: Refer to the [arXiv paper](https://arxiv.org/abs/2212.04356), [blog post](https://openai.com/research/whisper), and [code](https://github.com/openai/whisper) for more details.
|
||||
|
@ -1,14 +1,12 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
import argparse
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx_whisper import audio, decoding, load_models, transcribe
|
||||
|
||||
from whisper import audio, decoding, load_models, transcribe
|
||||
|
||||
audio_file = "whisper/assets/ls_test.flac"
|
||||
audio_file = "mlx_whisper/assets/ls_test.flac"
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
@ -83,16 +81,7 @@ if __name__ == "__main__":
|
||||
print(f"\nFeature time {feat_time:.3f}")
|
||||
|
||||
for model_name in models:
|
||||
model_path = f"{args.mlx_dir}/{model_name}"
|
||||
if not os.path.exists(model_path):
|
||||
print(
|
||||
f"\nDidn't find the MLX-format {model_name} model in the folder {args.mlx_dir}. Lauching conversion"
|
||||
)
|
||||
subprocess.run(
|
||||
f"python convert.py --torch-name-or-path {model_name} --mlx-path {model_path}",
|
||||
shell=True,
|
||||
)
|
||||
|
||||
model_path = f"mlx-community/whisper-{model_name}-mlx"
|
||||
print(f"\nModel: {model_name.upper()}")
|
||||
tokens = mx.array(
|
||||
[
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
@ -16,11 +16,10 @@ import mlx.nn as nn
|
||||
import numpy as np
|
||||
import torch
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
from mlx_whisper import torch_whisper
|
||||
from mlx_whisper.whisper import ModelDimensions, Whisper
|
||||
from tqdm import tqdm
|
||||
|
||||
from whisper import torch_whisper
|
||||
from whisper.whisper import ModelDimensions, Whisper
|
||||
|
||||
_VALID_DTYPES = {"float16", "float32"}
|
||||
|
||||
_MODELS = {
|
||||
|
@ -1,4 +1,5 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from . import audio, decoding, load_models
|
||||
from .transcribe import transcribe
|
||||
from .version import __version__
|
@ -4,6 +4,6 @@ numpy
|
||||
torch
|
||||
tqdm
|
||||
more-itertools
|
||||
tiktoken==0.3.3
|
||||
tiktoken
|
||||
huggingface_hub
|
||||
scipy
|
3
whisper/mlx_whisper/version.py
Normal file
3
whisper/mlx_whisper/version.py
Normal file
@ -0,0 +1,3 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
__version__ = "0.1.0"
|
32
whisper/setup.py
Normal file
32
whisper/setup.py
Normal file
@ -0,0 +1,32 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
package_dir = Path(__file__).parent / "mlx_whisper"
|
||||
|
||||
with open(package_dir / "requirements.txt") as fid:
|
||||
requirements = [l.strip() for l in fid.readlines()]
|
||||
|
||||
sys.path.append(str(package_dir))
|
||||
|
||||
from version import __version__
|
||||
|
||||
setup(
|
||||
name="mlx-whisper",
|
||||
version=__version__,
|
||||
description="OpenAI Whisper on Apple silicon with MLX and the Hugging Face Hub",
|
||||
long_description=open("README.md", encoding="utf-8").read(),
|
||||
long_description_content_type="text/markdown",
|
||||
readme="README.md",
|
||||
author_email="mlx@group.apple.com",
|
||||
author="MLX Contributors",
|
||||
url="https://github.com/ml-explore/mlx-examples",
|
||||
license="MIT",
|
||||
install_requires=requirements,
|
||||
packages=find_packages(),
|
||||
include_package_data=True,
|
||||
python_requires=">=3.8",
|
||||
)
|
@ -1,4 +1,4 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import json
|
||||
import os
|
||||
@ -7,21 +7,20 @@ from dataclasses import asdict
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx_whisper
|
||||
import mlx_whisper.audio as audio
|
||||
import mlx_whisper.decoding as decoding
|
||||
import mlx_whisper.load_models as load_models
|
||||
import numpy as np
|
||||
import torch
|
||||
from convert import load_torch_model, quantize, torch_to_mlx
|
||||
from mlx.utils import tree_flatten
|
||||
|
||||
import whisper
|
||||
import whisper.audio as audio
|
||||
import whisper.decoding as decoding
|
||||
import whisper.load_models as load_models
|
||||
|
||||
MODEL_NAME = "tiny"
|
||||
MLX_FP32_MODEL_PATH = "mlx_models/tiny_fp32"
|
||||
MLX_FP16_MODEL_PATH = "mlx_models/tiny_fp16"
|
||||
MLX_4BITS_MODEL_PATH = "mlx_models/tiny_quantized_4bits"
|
||||
TEST_AUDIO = "whisper/assets/ls_test.flac"
|
||||
TEST_AUDIO = "mlx_whisper/assets/ls_test.flac"
|
||||
|
||||
|
||||
def _save_model(save_dir, weights, config):
|
||||
@ -187,7 +186,7 @@ class TestWhisper(unittest.TestCase):
|
||||
self.assertAlmostEqual(result.compression_ratio, 1.2359550561797752)
|
||||
|
||||
def test_transcribe(self):
|
||||
result = whisper.transcribe(
|
||||
result = mlx_whisper.transcribe(
|
||||
TEST_AUDIO, path_or_hf_repo=MLX_FP32_MODEL_PATH, fp16=False
|
||||
)
|
||||
self.assertEqual(
|
||||
@ -208,7 +207,7 @@ class TestWhisper(unittest.TestCase):
|
||||
print("bash path_to_whisper_repo/whisper/assets/download_alice.sh")
|
||||
return
|
||||
|
||||
result = whisper.transcribe(
|
||||
result = mlx_whisper.transcribe(
|
||||
audio_file, path_or_hf_repo=MLX_FP32_MODEL_PATH, fp16=False
|
||||
)
|
||||
self.assertEqual(len(result["text"]), 10920)
|
||||
@ -311,7 +310,7 @@ class TestWhisper(unittest.TestCase):
|
||||
check_segment(result["segments"][73], expected_73)
|
||||
|
||||
def test_transcribe_word_level_timestamps_confidence_scores(self):
|
||||
result = whisper.transcribe(
|
||||
result = mlx_whisper.transcribe(
|
||||
TEST_AUDIO,
|
||||
path_or_hf_repo=MLX_FP16_MODEL_PATH,
|
||||
word_timestamps=True,
|
||||
|
Loading…
Reference in New Issue
Block a user