Adds EXAONE architecture.

This commit is contained in:
n8programs 2024-12-09 00:52:05 -05:00 committed by GitHub
parent 2211b27388
commit 68538a6e1d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -0,0 +1,255 @@
# Copyright © 2023-2024 Apple Inc.
from dataclasses import dataclass
from typing import Any, Dict, Optional, Union
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
hidden_size: int
num_hidden_layers: int
intermediate_size: int
num_attention_heads: int
rms_norm_eps: float
vocab_size: int
rope_theta: float
embed_dropout: float
attention_dropout: float
layer_norm_epsilon: float
activation_function: str
num_key_value_heads: Optional[int] = None
head_dim: Optional[int] = None
max_position_embeddings: Optional[int] = None
rope_traditional: bool = False
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
tie_word_embeddings: bool = True
attn_implementation: str = "eager"
# For simplicity, we assume no bias in Q, K, V, and MLP similar to the original code
attention_bias: bool = False
mlp_bias: bool = False
@classmethod
def from_dict(cls, params):
if 'num_layers' in params:
params['num_hidden_layers'] = params['num_layers']
if 'layer_norm_epsilon' in params:
params['rms_norm_eps'] = params['layer_norm_epsilon']
return super().from_dict(params)
def __post_init__(self):
if self.num_key_value_heads is None:
self.num_key_value_heads = self.num_attention_heads
if self.rope_scaling:
rope_type = self.rope_scaling.get("type") or self.rope_scaling.get("rope_type")
if rope_type is None:
raise ValueError("rope_scaling must contain either 'type' or 'rope_type'")
if rope_type not in ["linear", "dynamic", "llama3", "default"]:
raise ValueError(
"rope_scaling 'type' currently only supports 'linear', 'dynamic', 'llama3', or 'default'"
)
class ExaoneRotaryEmbedding(nn.Module):
def __init__(
self,
dims: int,
max_position_embeddings: int = 2048,
traditional: bool = False,
base: float = 10000,
scale: float = 1.0,
rope_type: str = "default",
rope_scaling: Optional[Dict[str, Union[float, str]]] = None,
):
super().__init__()
self.dims = dims
self.max_position_embeddings = max_position_embeddings
self.traditional = traditional
self.scale = scale
self.rope_type = rope_type
self.rope_scaling = rope_scaling
self.base = base
def __call__(self, x, offset: int = 0):
return mx.fast.rope(
x,
self.dims,
traditional=self.traditional,
base=self.base,
scale=self.scale,
offset=offset,
freqs=None,
)
def initialize_rope(args: ModelArgs):
head_dim = args.head_dim or (args.hidden_size // args.num_attention_heads)
rope_scaling = args.rope_scaling
rope_type = "default"
rope_scale = 1.0
if rope_scaling is not None:
rope_type = rope_scaling.get("type") or rope_scaling.get("rope_type", "default")
if rope_type == "linear":
rope_scale = 1 / rope_scaling["factor"]
elif rope_type in ["llama3", "dynamic"]:
rope_scale = 1.0
return ExaoneRotaryEmbedding(
dims=head_dim,
max_position_embeddings=args.max_position_embeddings or 2048,
traditional=args.rope_traditional,
base=args.rope_theta,
scale=rope_scale,
rope_type=rope_type,
rope_scaling=rope_scaling,
)
class AttentionModule(nn.Module):
# This module corresponds to "attention" inside "attn"
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
self.head_dim = head_dim = args.head_dim or (dim // n_heads)
self.scale = head_dim ** -0.5
# Match naming exactly: q_proj, k_proj, v_proj, out_proj
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
self.out_proj = nn.Linear(n_heads * head_dim, dim, bias=args.attention_bias)
self.rope = initialize_rope(args)
self.attention_dropout = args.attention_dropout
def __call__(self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None) -> mx.array:
B, L, D = x.shape
q = self.q_proj(x).reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
k = self.k_proj(x).reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
v = self.v_proj(x).reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
q = self.rope(q, offset=cache.offset)
k = self.rope(k, offset=cache.offset)
k, v = cache.update_and_fetch(k, v)
else:
q = self.rope(q)
k = self.rope(k)
out = scaled_dot_product_attention(q, k, v, cache=cache, scale=self.scale, mask=mask)
out = out.transpose(0, 2, 1, 3).reshape(B, L, D)
return self.out_proj(out)
class Attention(nn.Module):
# This corresponds to "attn" module that contains "attention"
def __init__(self, args: ModelArgs):
super().__init__()
self.attention = AttentionModule(args)
class MLP(nn.Module):
# This corresponds to "mlp" module that contains c_fc_0, c_fc_1, c_proj
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
hidden_dim = args.intermediate_size
self.c_fc_0 = nn.Linear(dim, hidden_dim, bias=args.mlp_bias)
self.c_fc_1 = nn.Linear(dim, hidden_dim, bias=args.mlp_bias)
self.c_proj = nn.Linear(hidden_dim, dim, bias=args.mlp_bias)
def __call__(self, x: mx.array) -> mx.array:
return self.c_proj(nn.silu(self.c_fc_0(x)) * self.c_fc_1(x))
class TransformerBlock(nn.Module):
# A single layer: transformer.h.<layer>
# contains: ln_1, attn, ln_2, mlp
def __init__(self, args: ModelArgs):
super().__init__()
self.ln_1 = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.attn = Attention(args)
self.ln_2 = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.mlp = MLP(args)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
h = x + self.attn.attention(self.ln_1(x), mask, cache)
out = h + self.mlp(self.ln_2(h))
return out
class ExaoneModel(nn.Module):
# top-level: transformer
# contains: wte, h, ln_f
def __init__(self, args: ModelArgs):
super().__init__()
# all these must be attributes of self.transformer to have "transformer." prefix
self.wte = nn.Embedding(args.vocab_size, args.hidden_size)
self.h = [TransformerBlock(args) for _ in range(args.num_hidden_layers)]
self.ln_f = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.embed_dropout = args.embed_dropout
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.wte(inputs)
#h = nn.dropout(h, p=self.embed_dropout)
mask = create_attention_mask(h, cache)
if cache is None:
cache = [None] * len(self.h)
for (layer, c) in zip(self.h, cache):
h = layer(h, mask, cache=c)
return self.ln_f(h)
class Model(nn.Module):
# The final model, containing `transformer` and optionally `lm_head`
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.transformer = ExaoneModel(args)
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
):
out = self.transformer(inputs, cache)
if self.args.tie_word_embeddings:
# tie_word_embeddings means lm_head shares weight with wte
out = self.transformer.wte.as_linear(out)
else:
out = self.lm_head(out)
return out
def sanitize(self, weights):
return {k: v for k, v in weights.items()}
@property
def layers(self):
return self.transformer.h