mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 02:33:23 +08:00
Merge branch 'main' into adding-orpo-training
This commit is contained in:
commit
6a3912be7f
@ -1,3 +1,3 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
__version__ = "0.21.5"
|
||||
__version__ = "0.21.6"
|
||||
|
@ -65,12 +65,25 @@ def main():
|
||||
tokenizer_config={"trust_remote_code": True},
|
||||
)
|
||||
|
||||
print(f"[INFO] Starting chat session with {args.model}. To exit, enter 'q'.")
|
||||
def print_help():
|
||||
print("The command list:")
|
||||
print("- 'q' to exit")
|
||||
print("- 'r' to reset the chat")
|
||||
print("- 'h' to display these commands")
|
||||
|
||||
print(f"[INFO] Starting chat session with {args.model}.")
|
||||
print_help()
|
||||
prompt_cache = make_prompt_cache(model, args.max_kv_size)
|
||||
while True:
|
||||
query = input(">> ")
|
||||
if query == "q":
|
||||
break
|
||||
if query == "r":
|
||||
prompt_cache = make_prompt_cache(model, args.max_kv_size)
|
||||
continue
|
||||
if query == "h":
|
||||
print_help()
|
||||
continue
|
||||
messages = [{"role": "user", "content": query}]
|
||||
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
||||
for response in stream_generate(
|
||||
|
@ -1,8 +1,27 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
from enum import Enum
|
||||
|
||||
from .utils import convert
|
||||
from .utils import convert, mixed_2_6, mixed_3_6
|
||||
|
||||
|
||||
class MixedQuants(Enum):
|
||||
mixed_3_6 = "mixed_3_6"
|
||||
mixed_2_6 = "mixed_2_6"
|
||||
|
||||
@classmethod
|
||||
def recipe_names(cls):
|
||||
return [member.name for member in cls]
|
||||
|
||||
|
||||
def quant_args(arg):
|
||||
try:
|
||||
return MixedQuants[arg].value
|
||||
except KeyError:
|
||||
raise argparse.ArgumentTypeError(
|
||||
f"Invalid q-recipe {arg!r}. Choose from: {MixedQuants.recipe_names()}"
|
||||
)
|
||||
|
||||
|
||||
def configure_parser() -> argparse.ArgumentParser:
|
||||
@ -29,6 +48,12 @@ def configure_parser() -> argparse.ArgumentParser:
|
||||
parser.add_argument(
|
||||
"--q-bits", help="Bits per weight for quantization.", type=int, default=4
|
||||
)
|
||||
parser.add_argument(
|
||||
"--quant-predicate",
|
||||
help=f"Mixed-bit quantization recipe. Choices: {MixedQuants.recipe_names()}",
|
||||
type=quant_args,
|
||||
required=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
help="Type to save the non-quantized parameters.",
|
||||
|
@ -289,17 +289,15 @@ class MLXLM(LM):
|
||||
contexts, options = zip(*[req.args for req in requests])
|
||||
# contrary to the doc the second element of the tuple contains
|
||||
# {'do_sample': False, 'until': ['\n\n'], 'temperature': 0}
|
||||
keys = list(options[0].keys())
|
||||
assert "until" in keys
|
||||
untils = [x["until"] for x in options]
|
||||
completions = []
|
||||
|
||||
for context, until in tqdm(zip(contexts, untils), total=len(contexts)):
|
||||
for context, opt in tqdm(zip(contexts, options), total=len(contexts)):
|
||||
until = opt["until"]
|
||||
context = self.tokenizer.encode(
|
||||
context, add_special_tokens=not self.use_chat_template
|
||||
)
|
||||
max_tokens = min(
|
||||
self._max_tokens,
|
||||
opt.get("max_gen_tokens", self._max_tokens),
|
||||
self.tokenizer.model_max_length - len(context),
|
||||
)
|
||||
text = ""
|
||||
@ -334,9 +332,9 @@ def main():
|
||||
)
|
||||
parser.add_argument(
|
||||
"--limit",
|
||||
default=1.0,
|
||||
default=100,
|
||||
help="Limit the number of examples per task.",
|
||||
type=float,
|
||||
type=int,
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=123, help="Random seed.")
|
||||
parser.add_argument(
|
||||
|
@ -60,6 +60,11 @@ def setup_arg_parser():
|
||||
default=DEFAULT_PROMPT,
|
||||
help="Message to be processed by the model ('-' reads from stdin)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prefill-response",
|
||||
default=None,
|
||||
help="Prefill response to be used for the chat template",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-tokens",
|
||||
"-m",
|
||||
@ -219,10 +224,14 @@ def main():
|
||||
messages = []
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
has_prefill = args.prefill_response is not None
|
||||
if has_prefill:
|
||||
messages.append({"role": "assistant", "content": args.prefill_response})
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
continue_final_message=has_prefill,
|
||||
add_generation_prompt=not has_prefill,
|
||||
**template_kwargs,
|
||||
)
|
||||
|
||||
@ -233,7 +242,8 @@ def main():
|
||||
test_prompt = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
continue_final_message=has_prefill,
|
||||
add_generation_prompt=not has_prefill,
|
||||
)
|
||||
prompt = prompt[test_prompt.index("<query>") :]
|
||||
prompt = tokenizer.encode(prompt, add_special_tokens=False)
|
||||
|
@ -64,6 +64,9 @@ CONFIG_DEFAULTS = {
|
||||
"grad_checkpoint": False,
|
||||
"lr_schedule": None,
|
||||
"lora_parameters": {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0},
|
||||
"mask_prompt": False,
|
||||
|
||||
# ORPO args
|
||||
"beta": 0.1,
|
||||
"dpo_loss_type": "sigmoid",
|
||||
"delta": 50.0,
|
||||
@ -106,7 +109,7 @@ def build_parser():
|
||||
"--mask-prompt",
|
||||
action="store_true",
|
||||
help="Mask the prompt in the loss when training",
|
||||
default=False,
|
||||
default=None,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
|
@ -2,7 +2,22 @@ import argparse
|
||||
from typing import List, Union
|
||||
|
||||
from huggingface_hub import scan_cache_dir
|
||||
from transformers.commands.user import tabulate
|
||||
|
||||
|
||||
def tabulate(rows: List[List[Union[str, int]]], headers: List[str]) -> str:
|
||||
"""
|
||||
Inspired by:
|
||||
- stackoverflow.com/a/8356620/593036
|
||||
- stackoverflow.com/questions/9535954/printing-lists-as-tabular-data
|
||||
"""
|
||||
col_widths = [max(len(str(x)) for x in col) for col in zip(*rows, headers)]
|
||||
row_format = ("{{:{}}} " * len(headers)).format(*col_widths)
|
||||
lines = []
|
||||
lines.append(row_format.format(*headers))
|
||||
lines.append(row_format.format(*["-" * w for w in col_widths]))
|
||||
for row in rows:
|
||||
lines.append(row_format.format(*row))
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
def ask_for_confirmation(message: str) -> bool:
|
||||
|
@ -181,6 +181,7 @@ class DeepseekV3Attention(nn.Module):
|
||||
bias=config.attention_bias,
|
||||
)
|
||||
|
||||
if self.config.rope_scaling is not None:
|
||||
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
|
||||
scaling_factor = self.config.rope_scaling["factor"]
|
||||
if mscale_all_dim:
|
||||
@ -205,6 +206,12 @@ class DeepseekV3Attention(nn.Module):
|
||||
base=self.rope_theta,
|
||||
**rope_kwargs,
|
||||
)
|
||||
else:
|
||||
self.rope = nn.RoPE(
|
||||
dims=self.qk_rope_head_dim,
|
||||
base=self.rope_theta,
|
||||
traditional=True,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
@ -487,8 +494,12 @@ class Model(nn.Module):
|
||||
]
|
||||
weights[f"{prefix}.mlp.switch_mlp.{m}.{k}"] = mx.stack(to_join)
|
||||
|
||||
# Remove multi-token prediction layer
|
||||
return {k: v for k, v in weights.items() if not k.startswith("model.layers.61")}
|
||||
# Remove multi-token prediction layer and any unused precomputed rotary freqs
|
||||
return {
|
||||
k: v
|
||||
for k, v in weights.items()
|
||||
if not k.startswith("model.layers.61") and "rotary_emb.inv_freq" not in k
|
||||
}
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
|
@ -23,8 +23,10 @@ class ModelArgs(BaseModelArgs):
|
||||
rope_theta: float = 10000
|
||||
rope_traditional: bool = False
|
||||
rope_scaling: Optional[Dict[str, Union[float, List[float]]]] = None
|
||||
partial_rotary_factor: float = 1.0
|
||||
max_position_embeddings: int = 131072
|
||||
original_max_position_embeddings: int = 4096
|
||||
tie_word_embeddings: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
if self.num_key_value_heads is None:
|
||||
@ -59,9 +61,10 @@ class Attention(nn.Module):
|
||||
self.qkv_proj = nn.Linear(dim, op_size, bias=False)
|
||||
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
||||
|
||||
rope_dim = int(head_dim * args.partial_rotary_factor)
|
||||
if args.rope_scaling and args.rope_scaling["type"] in ["longrope", "su"]:
|
||||
self.rope = SuScaledRotaryEmbedding(
|
||||
head_dim,
|
||||
rope_dim,
|
||||
base=args.rope_theta,
|
||||
max_position_embeddings=args.max_position_embeddings,
|
||||
original_max_position_embeddings=args.original_max_position_embeddings,
|
||||
@ -74,7 +77,7 @@ class Attention(nn.Module):
|
||||
assert isinstance(args.rope_scaling["factor"], float)
|
||||
rope_scale = 1 / args.rope_scaling["factor"]
|
||||
self.rope = nn.RoPE(
|
||||
head_dim,
|
||||
rope_dim,
|
||||
traditional=args.rope_traditional,
|
||||
base=args.rope_theta,
|
||||
scale=rope_scale,
|
||||
@ -190,6 +193,7 @@ class Model(nn.Module):
|
||||
super().__init__()
|
||||
self.model_type = args.model_type
|
||||
self.model = Phi3Model(args)
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
self.args = args
|
||||
|
||||
@ -200,7 +204,11 @@ class Model(nn.Module):
|
||||
cache=None,
|
||||
):
|
||||
out = self.model(inputs, mask, cache)
|
||||
return self.lm_head(out)
|
||||
if self.args.tie_word_embeddings:
|
||||
out = self.model.embed_tokens.as_linear(out)
|
||||
else:
|
||||
out = self.lm_head(out)
|
||||
return out
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
|
@ -51,11 +51,13 @@ class SuScaledRotaryEmbedding(nn.Module):
|
||||
+ math.log(max_position_embeddings / original_max_position_embeddings)
|
||||
/ math.log(original_max_position_embeddings)
|
||||
)
|
||||
self.dim = dims
|
||||
|
||||
def __call__(self, x, offset: int = 0):
|
||||
x[..., : self.dim] = self.scale * x[..., : self.dim]
|
||||
return mx.fast.rope(
|
||||
self.scale * x,
|
||||
x.shape[-1],
|
||||
x,
|
||||
self.dim,
|
||||
traditional=False,
|
||||
base=None,
|
||||
scale=1.0,
|
||||
|
@ -191,6 +191,7 @@ def get_model_path(path_or_hf_repo: str, revision: Optional[str] = None) -> Path
|
||||
"*.py",
|
||||
"tokenizer.model",
|
||||
"*.tiktoken",
|
||||
"tiktoken.model",
|
||||
"*.txt",
|
||||
"*.jsonl",
|
||||
],
|
||||
@ -1015,6 +1016,46 @@ def save_config(
|
||||
json.dump(config, fid, indent=4)
|
||||
|
||||
|
||||
def mixed_quant_predicate_builder(
|
||||
low_bits: int = 4, high_bits: int = 4, group_size: int = 64
|
||||
) -> Callable[[str, nn.Module, dict], Union[bool, dict]]:
|
||||
def mixed_quant_predicate(
|
||||
path: str,
|
||||
module: nn.Module,
|
||||
config: dict,
|
||||
) -> Union[bool, dict]:
|
||||
"""Implements mixed quantization predicates with similar choices to, for example, llama.cpp's Q4_K_M.
|
||||
Ref: https://github.com/ggerganov/llama.cpp/blob/917786f43d0f29b7c77a0c56767c0fa4df68b1c5/src/llama.cpp#L5265
|
||||
By Alex Barron: https://gist.github.com/barronalex/84addb8078be21969f1690c1454855f3
|
||||
"""
|
||||
|
||||
if not hasattr(module, "to_quantized"):
|
||||
return False
|
||||
|
||||
index = int(path.split(".")[2]) if len(path.split(".")) > 2 else 0
|
||||
|
||||
num_layers = config["num_hidden_layers"]
|
||||
use_more_bits = (
|
||||
index < num_layers // 8
|
||||
or index >= 7 * num_layers // 8
|
||||
or (index - num_layers // 8) % 3 == 2
|
||||
)
|
||||
if "v_proj" in path and use_more_bits:
|
||||
return {"group_size": group_size, "bits": high_bits}
|
||||
if "down_proj" in path and use_more_bits:
|
||||
return {"group_size": group_size, "bits": high_bits}
|
||||
if "lm_head" in path:
|
||||
return {"group_size": group_size, "bits": high_bits}
|
||||
|
||||
return {"group_size": group_size, "bits": low_bits}
|
||||
|
||||
return mixed_quant_predicate
|
||||
|
||||
|
||||
mixed_3_6 = mixed_quant_predicate_builder(low_bits=3)
|
||||
mixed_2_6 = mixed_quant_predicate_builder(low_bits=2)
|
||||
|
||||
|
||||
def convert(
|
||||
hf_path: str,
|
||||
mlx_path: str = "mlx_model",
|
||||
|
Loading…
Reference in New Issue
Block a user