mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-28 00:30:09 +08:00
simplify collections
This commit is contained in:
parent
b9748e9ee4
commit
6ace6dc6b2
@ -299,7 +299,7 @@ it on the command line. For example, pass `--data mlx-community/wikisql` to
|
||||
train on the pre-formatted WikiwSQL data.
|
||||
|
||||
Otherwise, provide a mapping of keys in the dataset to the features MLX LM
|
||||
expects. Use a YAML config to specify the Hugging Face (HF) dataset arguments. For
|
||||
expects. Use a YAML config to specify the Hugging Face dataset arguments. For
|
||||
example:
|
||||
|
||||
```yaml
|
||||
@ -316,19 +316,17 @@ hf_dataset:
|
||||
- To specify the train, valid, or test splits, set the corresponding
|
||||
`{train,valid,test}_split` argument.
|
||||
|
||||
You can specify a list of HF datasets using the `hf_datasets` (plural) configuration, which is a list of records
|
||||
each with the same structure as above. For example:
|
||||
You can specify a list of Hugging Face datasets with a list of records each
|
||||
with the same structure as above. For example:
|
||||
|
||||
```yaml
|
||||
hf_datasets:
|
||||
- hf_dataset:
|
||||
name: "Open-Orca/OpenOrca"
|
||||
hf_dataset:
|
||||
- name: "Open-Orca/OpenOrca"
|
||||
train_split: "train[:90%]"
|
||||
valid_split: "train[-10%:]"
|
||||
prompt_feature: "question"
|
||||
completion_feature: "response"
|
||||
- hf_dataset:
|
||||
name: "trl-lib/ultrafeedback_binarized"
|
||||
- name: "trl-lib/ultrafeedback_binarized"
|
||||
train_split: "train[:90%]"
|
||||
valid_split: "train[-10%:]"
|
||||
chat_feature: "chosen"
|
||||
|
@ -61,7 +61,6 @@ CONFIG_DEFAULTS = {
|
||||
"config": None,
|
||||
"grad_checkpoint": False,
|
||||
"lr_schedule": None,
|
||||
"hf_datasets": None,
|
||||
"lora_parameters": {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0},
|
||||
"response_template": None,
|
||||
}
|
||||
|
@ -1,6 +1,7 @@
|
||||
import itertools
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from transformers import PreTrainedTokenizer
|
||||
|
||||
@ -34,7 +35,12 @@ class ChatDataset:
|
||||
https://platform.openai.com/docs/guides/fine-tuning/example-format
|
||||
"""
|
||||
|
||||
def __init__(self, data: List[Dict[str, str]], tokenizer: PreTrainedTokenizer, chat_key: str = "messages"):
|
||||
def __init__(
|
||||
self,
|
||||
data: List[Dict[str, str]],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
chat_key: str = "messages",
|
||||
):
|
||||
self._data = [
|
||||
tokenizer.apply_chat_template(
|
||||
d[chat_key],
|
||||
@ -42,7 +48,6 @@ class ChatDataset:
|
||||
)
|
||||
for d in data
|
||||
]
|
||||
self._chat_key = chat_key
|
||||
|
||||
def __getitem__(self, idx: int):
|
||||
return self._data[idx]
|
||||
@ -82,48 +87,15 @@ class CompletionsDataset:
|
||||
return len(self._data)
|
||||
|
||||
|
||||
class CompletionsDatasetCollection:
|
||||
def __init__(self, data: List[Union[ChatDataset, CompletionsDataset]]):
|
||||
self.collection = data
|
||||
|
||||
def __fetch_and_process_item__(self, idx: int, handler_fn: Callable):
|
||||
iteration = iter(self.collection)
|
||||
item = next(iteration)
|
||||
|
||||
curr_idx = idx
|
||||
|
||||
while True:
|
||||
try:
|
||||
if (curr_idx + 1) <= len(item):
|
||||
return handler_fn(item, curr_idx)
|
||||
else:
|
||||
curr_idx -= len(item)
|
||||
item = next(iteration)
|
||||
except StopIteration:
|
||||
raise IndexError(idx)
|
||||
class ConcatenatedDataset:
|
||||
def __init__(self, data: List[Any]):
|
||||
self._data = list(itertools.chain(*data))
|
||||
|
||||
def __getitem__(self, idx: int):
|
||||
def getitem(dataset: CompletionsDataset, index: int):
|
||||
return dataset[index]
|
||||
|
||||
return self.__fetch_and_process_item__(idx, getitem)
|
||||
|
||||
def get_item(
|
||||
self, idx: int, tokenize: bool = False, add_generation_prompt: bool = True
|
||||
) -> str:
|
||||
def getitem(dataset: CompletionsDataset, index: int):
|
||||
return dataset.get_item(index, tokenize, add_generation_prompt)
|
||||
|
||||
return self.__fetch_and_process_item__(idx, getitem)
|
||||
|
||||
def get_prompt_and_completion(self, idx: int):
|
||||
def getitem(dataset: CompletionsDataset, index: int):
|
||||
return dataset.get_prompt_and_completion(index)
|
||||
|
||||
return self.__fetch_and_process_item__(idx, getitem)
|
||||
return self._data[idx]
|
||||
|
||||
def __len__(self):
|
||||
return sum(map(len, self.collection))
|
||||
return len(self._data)
|
||||
|
||||
|
||||
def create_dataset(
|
||||
@ -206,11 +178,12 @@ def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||
completion_feature,
|
||||
chat_feature,
|
||||
split,
|
||||
config,
|
||||
):
|
||||
ds = datasets.load_dataset(
|
||||
dataset_name,
|
||||
split=split,
|
||||
**hf_args.get("config", {}),
|
||||
**config,
|
||||
)
|
||||
if prompt_feature and completion_feature:
|
||||
return CompletionsDataset(ds, tokenizer, prompt_feature, completion_feature)
|
||||
@ -224,54 +197,68 @@ def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||
" or a text feature for the Hugging Face dataset."
|
||||
)
|
||||
|
||||
def get_train_and_valid_splits(hf_args, ds_name):
|
||||
text_f = hf_args.get("text_feature", None)
|
||||
prompt_f = hf_args.get("prompt_feature", None)
|
||||
completion_f = hf_args.get("completion_feature", None)
|
||||
chat_f = hf_args.get("chat_feature", None)
|
||||
dataset_collection = args.hf_dataset
|
||||
if isinstance(dataset_collection, dict):
|
||||
dataset_collection = [dataset_collection]
|
||||
|
||||
collection = []
|
||||
for ds in dataset_collection:
|
||||
ds_name = ds["name"]
|
||||
print(f"Loading Hugging Face dataset {ds_name}.")
|
||||
text_f = ds.get("text_feature", None)
|
||||
prompt_f = ds.get("prompt_feature", None)
|
||||
completion_f = ds.get("completion_feature", None)
|
||||
chat_f = ds.get("chat_feature", None)
|
||||
ds_config = ds.get("config", {})
|
||||
if args.train:
|
||||
train_split = hf_args.get("train_split", "train[:80%]")
|
||||
valid_split = hf_args.get("valid_split", "train[-10%:]")
|
||||
train_split = ds.get("train_split", "train[:80%]")
|
||||
valid_split = ds.get("valid_split", "train[-10%:]")
|
||||
train = create_hf_dataset(
|
||||
ds_name, text_f, prompt_f, completion_f, chat_f, split=train_split
|
||||
ds_name,
|
||||
text_f,
|
||||
prompt_f,
|
||||
completion_f,
|
||||
chat_f,
|
||||
train_split,
|
||||
ds_config,
|
||||
)
|
||||
valid = create_hf_dataset(
|
||||
ds_name, text_f, prompt_f, completion_f, chat_f, split=valid_split
|
||||
ds_name,
|
||||
text_f,
|
||||
prompt_f,
|
||||
completion_f,
|
||||
chat_f,
|
||||
valid_split,
|
||||
ds_config,
|
||||
)
|
||||
else:
|
||||
train, valid = [], []
|
||||
|
||||
if args.test:
|
||||
test_split = hf_args.get("test_split")
|
||||
test_split = ds.get("test_split")
|
||||
test = create_hf_dataset(
|
||||
ds_name, text_f, prompt_f, completion_f, chat_f, split=test_split,
|
||||
ds_name,
|
||||
text_f,
|
||||
prompt_f,
|
||||
completion_f,
|
||||
chat_f,
|
||||
test_split,
|
||||
ds_config,
|
||||
)
|
||||
else:
|
||||
test = []
|
||||
|
||||
return train, valid, test
|
||||
collection.append((train, valid, test))
|
||||
|
||||
if args.datasets:
|
||||
dataset_collection = args.hf_datasets
|
||||
else:
|
||||
dataset_collection = {"hf_dataset": args.hf_dataset}
|
||||
|
||||
datasets = []
|
||||
for ds in dataset_collection:
|
||||
hf_args = ds["hf_dataset"]
|
||||
dataset_name = hf_args["name"]
|
||||
print(f"Loading Hugging Face dataset {dataset_name}.")
|
||||
datasets.append(get_splits(hf_args, dataset_name))
|
||||
if len(datsets) == 1:
|
||||
return *datasets
|
||||
if len(collection) == 1:
|
||||
return collection[0]
|
||||
|
||||
# Otherwise concatenate them
|
||||
train, valid, test = zip(*datasets)
|
||||
return tuple(map, Concatenate, zip(*datasets))
|
||||
return tuple(map(ConcatenatedDataset, zip(*collection)))
|
||||
|
||||
|
||||
def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||
if getattr(args, "hf_dataset", False) or getattr(args, "hf_datasets", False):
|
||||
if getattr(args, "hf_dataset", False):
|
||||
train, valid, test = load_custom_hf_dataset(args, tokenizer)
|
||||
else:
|
||||
data_path = Path(args.data)
|
||||
|
@ -78,14 +78,15 @@ class TestDatasets(unittest.TestCase):
|
||||
self.assertTrue(isinstance(train, datasets.ChatDataset))
|
||||
|
||||
def test_hf(self):
|
||||
hf_args = {
|
||||
"name": "billsum",
|
||||
"prompt_feature": "text",
|
||||
"completion_feature": "summary",
|
||||
"train_split": "train[:2%]",
|
||||
"valid_split": "train[-2%:]",
|
||||
}
|
||||
args = types.SimpleNamespace(
|
||||
hf_dataset={
|
||||
"name": "billsum",
|
||||
"prompt_feature": "text",
|
||||
"completion_feature": "summary",
|
||||
"train_split": "train[:2%]",
|
||||
"valid_split": "train[-2%:]",
|
||||
},
|
||||
hf_dataset=hf_args,
|
||||
test=False,
|
||||
train=True,
|
||||
)
|
||||
@ -97,6 +98,16 @@ class TestDatasets(unittest.TestCase):
|
||||
self.assertTrue(len(valid[0]) > 0)
|
||||
self.assertEqual(len(test), 0)
|
||||
|
||||
args = types.SimpleNamespace(
|
||||
hf_dataset=[hf_args, hf_args],
|
||||
test=False,
|
||||
train=True,
|
||||
)
|
||||
train_double, valid_double, test_double = datasets.load_dataset(args, tokenizer)
|
||||
self.assertEqual(2 * len(train), len(train_double))
|
||||
self.assertEqual(2 * len(valid), len(valid_double))
|
||||
self.assertEqual(2 * len(test), len(test_double))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
Loading…
Reference in New Issue
Block a user