mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 18:51:18 +08:00
updates
This commit is contained in:
parent
93370ff1c3
commit
6c58aa995c
@ -44,7 +44,7 @@ class GRPOTrainingArgs(TrainingArgs):
|
||||
)
|
||||
|
||||
|
||||
def compute_rewards(sequences, batch_size, group_size):
|
||||
def compute_default_rewards(sequences, batch_size, group_size):
|
||||
"""
|
||||
Args:
|
||||
sequences: List of word sequences
|
||||
@ -72,6 +72,7 @@ def grpo_loss(
|
||||
model,
|
||||
tokenizer,
|
||||
prompts,
|
||||
reward_funcs=None,
|
||||
beta=0.1,
|
||||
group_size=4,
|
||||
epslion=1e-4,
|
||||
@ -134,7 +135,10 @@ def grpo_loss(
|
||||
kl_div = (mx.exp(ref_token_log_probs - token_log_probs) - (ref_token_log_probs - token_log_probs) - 1)
|
||||
|
||||
# Calculate rewards
|
||||
rewards = compute_rewards(all_completions, batch_size, group_size)
|
||||
if reward_funcs:
|
||||
rewards = mx.array([sum(rf(all_completions) for rf in reward_funcs)])
|
||||
else:
|
||||
rewards = compute_default_rewards(all_completions, batch_size, group_size)
|
||||
|
||||
# Compute grouped-wise rewards
|
||||
grouped_rewards = rewards.reshape(batch_size, group_size)
|
||||
@ -266,6 +270,59 @@ def evaluate_grpo(
|
||||
|
||||
return (all_losses / ntokens).item()
|
||||
|
||||
def evaluate_grpo(
|
||||
model,
|
||||
ref_model,
|
||||
dataset,
|
||||
tokenizer,
|
||||
batch_size,
|
||||
num_batches,
|
||||
beta: float,
|
||||
epslion: float,
|
||||
group_size: int,
|
||||
max_seq_length,
|
||||
reward_funcs=None,
|
||||
loss: callable = grpo_loss,
|
||||
iterate_batches: callable = iterate_batches
|
||||
):
|
||||
all_losses = 0
|
||||
ntokens = 0
|
||||
|
||||
index_iterator = iter(range(num_batches)) if num_batches != -1 else iter(int, 1)
|
||||
|
||||
for _, batch in zip(
|
||||
index_iterator,
|
||||
iterate_batches(
|
||||
dataset=dataset,
|
||||
tokenizer=tokenizer,
|
||||
batch_size=batch_size,
|
||||
max_seq_length=max_seq_length,
|
||||
),
|
||||
):
|
||||
# Extract prompts from the batch (assuming the batch contains 'prompts')
|
||||
prompts = batch.get("prompts", None)
|
||||
|
||||
# Call the loss function with the correct arguments
|
||||
losses, toks, metrics = loss(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
prompts=prompts,
|
||||
reward_funcs=reward_funcs,
|
||||
beta=beta,
|
||||
group_size=group_size,
|
||||
epslion=epslion,
|
||||
ref_model=ref_model
|
||||
)
|
||||
|
||||
all_losses += losses * toks
|
||||
ntokens += toks
|
||||
mx.eval(all_losses, ntokens)
|
||||
|
||||
all_losses = mx.distributed.all_sum(all_losses, stream=mx.cpu)
|
||||
ntokens = mx.distributed.all_sum(ntokens, stream=mx.cpu)
|
||||
|
||||
return (all_losses / ntokens).item()
|
||||
|
||||
|
||||
def train(
|
||||
model,
|
||||
|
Loading…
Reference in New Issue
Block a user