mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-28 12:13:25 +08:00
refactor: make the phi2 example can be directly load the model from hf without convert needed (#253)
* refactor: make the phi2 example can be directly load the model from hf without convert needed * chore: add super().__init__() for all module, otherwise will cause error in lora
This commit is contained in:
parent
9742ad0f51
commit
6e5b0de4d3
@ -7,63 +7,52 @@ GPT-4 outputs and clean web text.
|
||||
Phi-2 efficiently runs on Apple silicon devices with 8GB of memory in 16-bit
|
||||
precision.
|
||||
|
||||
## Setup
|
||||
### Setup
|
||||
|
||||
Download and convert the model:
|
||||
|
||||
```sh
|
||||
python convert.py
|
||||
```
|
||||
|
||||
To generate a 4-bit quantized model use the `-q` flag:
|
||||
Install the dependencies:
|
||||
|
||||
```
|
||||
python convert.py -q
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
By default, the conversion script will make the directory `mlx_model` and save
|
||||
the converted `weights.npz`, and `config.json` there.
|
||||
|
||||
> [!TIP] Alternatively, you can also download a few converted checkpoints from
|
||||
> the [MLX Community](https://huggingface.co/mlx-community) organization on
|
||||
> Hugging Face and skip the conversion step.
|
||||
|
||||
|
||||
## Generate
|
||||
|
||||
To generate text with the default prompt:
|
||||
|
||||
```sh
|
||||
python phi2.py
|
||||
### Run
|
||||
```
|
||||
|
||||
Should give the output:
|
||||
python generate.py --model <model_path> --prompt "hello"
|
||||
```
|
||||
For example:
|
||||
|
||||
```
|
||||
Answer: Mathematics is like a lighthouse that guides us through the darkness of
|
||||
uncertainty. Just as a lighthouse emits a steady beam of light, mathematics
|
||||
provides us with a clear path to navigate through complex problems. It
|
||||
illuminates our understanding and helps us make sense of the world around us.
|
||||
python generate.py --model microsoft/phi-2 --prompt "hello"
|
||||
```
|
||||
The `<model_path>` should be either a path to a local directory or a Hugging
|
||||
Face repo with weights stored in `safetensors` format. If you use a repo from
|
||||
the Hugging Face Hub, then the model will be downloaded and cached the first
|
||||
time you run it.
|
||||
|
||||
Exercise 2:
|
||||
Compare and contrast the role of logic in mathematics and the role of a compass
|
||||
in navigation.
|
||||
Run `python generate.py --help` to see all the options.
|
||||
|
||||
Answer: Logic in mathematics is like a compass in navigation. It helps
|
||||
### Convert new models
|
||||
|
||||
You can convert (change the data type or quantize) models using the
|
||||
`convert.py` script. This script takes a Hugging Face repo as input and outputs
|
||||
a model directory (which you can optionally also upload to Hugging Face).
|
||||
|
||||
For example, to make 4-bit quantized a model, run:
|
||||
|
||||
```
|
||||
python convert.py --hf-path <hf_repo> -q
|
||||
```
|
||||
|
||||
To use your own prompt:
|
||||
For more options run:
|
||||
|
||||
```sh
|
||||
python phi2.py --prompt <your prompt here> --max-tokens <max_tokens_to_generate>
|
||||
```
|
||||
python convert.py --help
|
||||
```
|
||||
|
||||
To see a list of options run:
|
||||
|
||||
```sh
|
||||
python phi2.py --help
|
||||
```
|
||||
You can upload new models to the [Hugging Face MLX
|
||||
Community](https://huggingface.co/mlx-community) by specifying `--upload-name``
|
||||
to `convert.py`.
|
||||
|
||||
[^1]: For more details on the model see the [blog post](
|
||||
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/)
|
||||
and the [Hugging Face repo](https://huggingface.co/microsoft/phi-2)
|
||||
and the [Hugging Face repo](https://huggingface.co/microsoft/phi-2)
|
@ -1,23 +1,43 @@
|
||||
import argparse
|
||||
import copy
|
||||
import glob
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
from phi2 import ModelArgs, Phi2
|
||||
from transformers import AutoModelForCausalLM
|
||||
import transformers
|
||||
from huggingface_hub import snapshot_download
|
||||
from mlx.utils import tree_flatten
|
||||
from phi2 import Model, ModelArgs
|
||||
|
||||
|
||||
def fetch_from_hub(hf_path: str):
|
||||
model_path = snapshot_download(
|
||||
repo_id=hf_path,
|
||||
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
|
||||
)
|
||||
weight_files = glob.glob(f"{model_path}/*.safetensors")
|
||||
if len(weight_files) == 0:
|
||||
raise FileNotFoundError("No safetensors found in {}".format(model_path))
|
||||
|
||||
weights = {}
|
||||
for wf in weight_files:
|
||||
weights.update(mx.load(wf).items())
|
||||
|
||||
config = transformers.AutoConfig.from_pretrained(hf_path, trust_remote_code=True)
|
||||
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
||||
hf_path,
|
||||
)
|
||||
return weights, config.to_dict(), tokenizer
|
||||
|
||||
|
||||
def quantize(weights, config, args):
|
||||
quantized_config = copy.deepcopy(config)
|
||||
|
||||
# Load the model:
|
||||
model = Phi2(ModelArgs())
|
||||
weights = tree_map(mx.array, weights)
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
model = Model(ModelArgs.from_dict(config))
|
||||
model.load_weights(list(weights.items()))
|
||||
|
||||
# Quantize the model:
|
||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
||||
@ -32,22 +52,69 @@ def quantize(weights, config, args):
|
||||
return quantized_weights, quantized_config
|
||||
|
||||
|
||||
def replace_key(key: str) -> str:
|
||||
if "wte.weight" in key:
|
||||
key = "wte.weight"
|
||||
|
||||
if ".mlp" in key:
|
||||
key = key.replace(".mlp", "")
|
||||
return key
|
||||
def make_shards(weights: dict, max_file_size_gibibyte: int = 15):
|
||||
max_file_size_bytes = max_file_size_gibibyte << 30
|
||||
shards = []
|
||||
shard, shard_size = {}, 0
|
||||
for k, v in weights.items():
|
||||
estimated_size = v.size * v.dtype.size
|
||||
if shard_size + estimated_size > max_file_size_bytes:
|
||||
shards.append(shard)
|
||||
shard, shard_size = {}, 0
|
||||
shard[k] = v
|
||||
shard_size += estimated_size
|
||||
shards.append(shard)
|
||||
return shards
|
||||
|
||||
|
||||
def convert():
|
||||
parser = argparse.ArgumentParser(description="Convert Phi-2 weights to MLX")
|
||||
def upload_to_hub(path: str, name: str, hf_path: str):
|
||||
import os
|
||||
|
||||
from huggingface_hub import HfApi, ModelCard, logging
|
||||
|
||||
repo_id = f"mlx-community/{name}"
|
||||
|
||||
card = ModelCard.load(hf_path)
|
||||
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
|
||||
card.text = f"""
|
||||
# {name}
|
||||
This model was converted to MLX format from [`{hf_path}`]().
|
||||
Refer to the [original model card](https://huggingface.co/{hf_path}) for more details on the model.
|
||||
## Use with mlx
|
||||
```bash
|
||||
pip install mlx
|
||||
git clone https://github.com/ml-explore/mlx-examples.git
|
||||
cd mlx-examples/llms/hf_llm
|
||||
python generate.py --model {repo_id} --prompt "My name is"
|
||||
```
|
||||
"""
|
||||
card.save(os.path.join(path, "README.md"))
|
||||
|
||||
logging.set_verbosity_info()
|
||||
|
||||
api = HfApi()
|
||||
api.create_repo(repo_id=repo_id, exist_ok=True)
|
||||
api.upload_folder(
|
||||
folder_path=path,
|
||||
repo_id=repo_id,
|
||||
repo_type="model",
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Convert Hugging Face model to MLX format"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hf-path",
|
||||
type=str,
|
||||
help="Path to the Hugging Face model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mlx-path",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="The path to save the MLX model.",
|
||||
help="Path to save the MLX model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-q",
|
||||
@ -67,26 +134,39 @@ def convert():
|
||||
type=int,
|
||||
default=4,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
help="Type to save the parameters, ignored if -q is given.",
|
||||
type=str,
|
||||
choices=["float16", "bfloat16", "float32"],
|
||||
default="float16",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--upload-name",
|
||||
help="The name of model to upload to Hugging Face MLX Community",
|
||||
type=str,
|
||||
default=None,
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
print("[INFO] Loading")
|
||||
weights, config, tokenizer = fetch_from_hub(args.hf_path)
|
||||
|
||||
dtype = mx.float16 if args.quantize else getattr(mx, args.dtype)
|
||||
weights = {k: v.astype(dtype) for k, v in weights.items()}
|
||||
if args.quantize:
|
||||
print("[INFO] Quantizing")
|
||||
weights, config = quantize(weights, config, args)
|
||||
|
||||
mlx_path = Path(args.mlx_path)
|
||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"microsoft/phi-2", torch_dtype="auto", trust_remote_code=True
|
||||
)
|
||||
state_dict = model.state_dict()
|
||||
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
|
||||
params = {}
|
||||
if args.quantize:
|
||||
print("[INFO] Quantizing")
|
||||
weights, params = quantize(weights, params, args)
|
||||
|
||||
np.savez(str(mlx_path / "weights.npz"), **weights)
|
||||
shards = make_shards(weights)
|
||||
for i, shard in enumerate(shards):
|
||||
mx.save_safetensors(str(mlx_path / f"weights.{i:02d}.safetensors"), shard)
|
||||
tokenizer.save_pretrained(mlx_path)
|
||||
with open(mlx_path / "config.json", "w") as fid:
|
||||
params["model_type"] = "phi2"
|
||||
json.dump(params, fid, indent=4)
|
||||
json.dump(config, fid, indent=4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
convert()
|
||||
if args.upload_name is not None:
|
||||
upload_to_hub(mlx_path, args.upload_name, args.hf_path)
|
||||
|
91
llms/phi2/generate.py
Normal file
91
llms/phi2/generate.py
Normal file
@ -0,0 +1,91 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import phi2
|
||||
import transformers
|
||||
|
||||
|
||||
def generate(
|
||||
model: phi2.Model,
|
||||
tokenizer: transformers.AutoTokenizer,
|
||||
prompt: str,
|
||||
max_tokens: int,
|
||||
temp: float = 0.0,
|
||||
):
|
||||
print("[INFO] Generating with Phi-2...", flush=True)
|
||||
print(args.prompt, end="", flush=True)
|
||||
prompt = tokenizer(
|
||||
prompt,
|
||||
return_tensors="np",
|
||||
return_attention_mask=False,
|
||||
)[
|
||||
"input_ids"
|
||||
][0]
|
||||
prompt = mx.array(prompt)
|
||||
|
||||
tic = time.time()
|
||||
tokens = []
|
||||
skip = 0
|
||||
for token, n in zip(
|
||||
phi2.generate(prompt, model, args.temp),
|
||||
range(args.max_tokens),
|
||||
):
|
||||
if token == tokenizer.eos_token_id:
|
||||
break
|
||||
|
||||
if n == 0:
|
||||
prompt_time = time.time() - tic
|
||||
tic = time.time()
|
||||
|
||||
tokens.append(token.item())
|
||||
# if (n + 1) % 10 == 0:
|
||||
s = tokenizer.decode(tokens)
|
||||
print(s[skip:], end="", flush=True)
|
||||
skip = len(s)
|
||||
print(tokenizer.decode(tokens)[skip:], flush=True)
|
||||
gen_time = time.time() - tic
|
||||
print("=" * 10)
|
||||
if len(tokens) == 0:
|
||||
print("No tokens generated for this prompt")
|
||||
return
|
||||
prompt_tps = prompt.size / prompt_time
|
||||
gen_tps = (len(tokens) - 1) / gen_time
|
||||
print(f"Prompt: {prompt_tps:.3f} tokens-per-sec")
|
||||
print(f"Generation: {gen_tps:.3f} tokens-per-sec")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="inference script")
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="The path to the local model directory or Hugging Face repo.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt",
|
||||
help="The message to be processed by the model",
|
||||
default="Write a detailed analogy between mathematics and a lighthouse.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-tokens",
|
||||
"-m",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Maximum number of tokens to generate",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--temp",
|
||||
help="The sampling temperature.",
|
||||
type=float,
|
||||
default=0.0,
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
||||
|
||||
args = parser.parse_args()
|
||||
mx.random.seed(args.seed)
|
||||
model, tokenizer = phi2.load(args.model)
|
||||
generate(model, tokenizer, args.prompt, args.max_tokens, args.temp)
|
@ -1,4 +1,6 @@
|
||||
import argparse
|
||||
import glob
|
||||
import inspect
|
||||
import json
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
@ -7,6 +9,7 @@ from typing import Optional
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from huggingface_hub import snapshot_download
|
||||
from mlx.utils import tree_unflatten
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
@ -20,6 +23,16 @@ class ModelArgs:
|
||||
num_layers: int = 32
|
||||
rotary_dim: int = 32
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, params):
|
||||
return cls(
|
||||
**{
|
||||
k: v
|
||||
for k, v in params.items()
|
||||
if k in inspect.signature(cls).parameters
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
@ -75,6 +88,17 @@ class RoPEAttention(nn.Module):
|
||||
return self.out_proj(values_hat), (keys, values)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.fc1 = nn.Linear(dim, hidden_dim)
|
||||
self.fc2 = nn.Linear(hidden_dim, dim)
|
||||
self.act = nn.GELU(approx="precise")
|
||||
|
||||
def __call__(self, x) -> mx.array:
|
||||
return self.fc2(self.act(self.fc1(x)))
|
||||
|
||||
|
||||
class ParallelBlock(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
@ -82,23 +106,23 @@ class ParallelBlock(nn.Module):
|
||||
mlp_dims = dims * 4
|
||||
self.mixer = RoPEAttention(dims, config.num_heads, config.rotary_dim)
|
||||
self.ln = LayerNorm(dims)
|
||||
self.fc1 = nn.Linear(dims, mlp_dims)
|
||||
self.fc2 = nn.Linear(mlp_dims, dims)
|
||||
self.act = nn.GELU(approx="precise")
|
||||
self.mlp = MLP(dims, mlp_dims)
|
||||
|
||||
def __call__(self, x, mask, cache):
|
||||
h = self.ln(x)
|
||||
attn_h, cache = self.mixer(h, mask, cache)
|
||||
ff_h = self.fc2(self.act(self.fc1(h)))
|
||||
ff_h = self.mlp(h)
|
||||
return attn_h + ff_h + x, cache
|
||||
|
||||
|
||||
class TransformerDecoder(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.embd = Embd(config)
|
||||
self.h = [ParallelBlock(config) for i in range(config.num_layers)]
|
||||
|
||||
def __call__(self, x, mask, cache):
|
||||
x = self.embd(x)
|
||||
if cache is None:
|
||||
cache = [None] * len(self.h)
|
||||
|
||||
@ -107,8 +131,18 @@ class TransformerDecoder(nn.Module):
|
||||
return x, cache
|
||||
|
||||
|
||||
class Embd(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.wte = nn.Embedding(config.num_vocab, config.model_dim)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.wte(x)
|
||||
|
||||
|
||||
class OutputHead(nn.Module):
|
||||
def __init__(self, config: ModelArgs) -> None:
|
||||
super().__init__()
|
||||
self.ln = LayerNorm(config.model_dim)
|
||||
self.linear = nn.Linear(config.model_dim, config.num_vocab)
|
||||
|
||||
@ -116,20 +150,18 @@ class OutputHead(nn.Module):
|
||||
return self.linear(self.ln(inputs))
|
||||
|
||||
|
||||
class Phi2(nn.Module):
|
||||
class Model(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
self.wte = nn.Embedding(config.num_vocab, config.model_dim)
|
||||
super().__init__()
|
||||
self.transformer = TransformerDecoder(config)
|
||||
self.lm_head = OutputHead(config)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
x: mx.array,
|
||||
mask: mx.array = None,
|
||||
cache: mx.array = None,
|
||||
) -> tuple[mx.array, mx.array]:
|
||||
x = self.wte(inputs)
|
||||
|
||||
mask = None
|
||||
if x.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
@ -139,104 +171,55 @@ class Phi2(nn.Module):
|
||||
return self.lm_head(y), cache
|
||||
|
||||
|
||||
def generate(prompt: mx.array, model: Phi2, temp: Optional[float] = 0.0):
|
||||
def generate(prompt: mx.array, model: Model, temp: float = 0.0):
|
||||
def sample(logits):
|
||||
if temp == 0:
|
||||
return mx.argmax(logits, axis=-1)
|
||||
else:
|
||||
return mx.random.categorical(logits * (1 / temp))
|
||||
|
||||
logits, cache = model(prompt)
|
||||
y = sample(logits[:, -1, :])
|
||||
yield y
|
||||
|
||||
y = prompt
|
||||
cache = None
|
||||
while True:
|
||||
logits, cache = model(y[:, None], cache=cache)
|
||||
y = sample(logits.squeeze(1))
|
||||
logits, cache = model(y[None], cache=cache)
|
||||
logits = logits[:, -1, :]
|
||||
y = sample(logits)
|
||||
yield y
|
||||
|
||||
|
||||
def load_model(model_path: str):
|
||||
model = Phi2(ModelArgs())
|
||||
model_path = Path(model_path)
|
||||
def load(path_or_hf_repo: str):
|
||||
# If the path exists, it will try to load model form it
|
||||
# otherwise download and cache from the hf_repo and cache
|
||||
model_path = Path(path_or_hf_repo)
|
||||
if not model_path.exists():
|
||||
model_path = Path(
|
||||
snapshot_download(
|
||||
repo_id=path_or_hf_repo,
|
||||
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
|
||||
)
|
||||
)
|
||||
|
||||
with open(model_path / "config.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
config.pop("model_type", None)
|
||||
quantization = config.pop("quantization", None)
|
||||
weights = mx.load(str(model_path / "weights.npz"))
|
||||
weights = tree_unflatten(list(weights.items()))
|
||||
quantization = config.get("quantization", None)
|
||||
model_args = ModelArgs.from_dict(config)
|
||||
|
||||
weight_files = glob.glob(str(model_path / "*.safetensors"))
|
||||
if len(weight_files) == 0:
|
||||
raise FileNotFoundError("No safetensors found in {}".format(model_path))
|
||||
|
||||
weights = {}
|
||||
for wf in weight_files:
|
||||
weights.update(mx.load(wf).items())
|
||||
|
||||
model = Model(model_args)
|
||||
if quantization is not None:
|
||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||
model.update(weights)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
||||
model.load_weights(list(weights.items()))
|
||||
|
||||
mx.eval(model.parameters())
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_path,
|
||||
)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Phi-2 inference script")
|
||||
parser.add_argument(
|
||||
"--model-path",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="The path to the model weights",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt",
|
||||
help="The message to be processed by the model",
|
||||
default="Write a detailed analogy between mathematics and a lighthouse.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-tokens",
|
||||
"-m",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Maximum number of tokens to generate",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--temp",
|
||||
help="The sampling temperature.",
|
||||
type=float,
|
||||
default=0.0,
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
||||
args = parser.parse_args()
|
||||
|
||||
mx.random.seed(args.seed)
|
||||
|
||||
model, tokenizer = load_model(args.model_path)
|
||||
|
||||
prompt = tokenizer(
|
||||
args.prompt,
|
||||
return_tensors="np",
|
||||
return_attention_mask=False,
|
||||
)["input_ids"]
|
||||
|
||||
prompt = mx.array(prompt)
|
||||
|
||||
print("[INFO] Generating with Phi-2...", flush=True)
|
||||
print(args.prompt, end="", flush=True)
|
||||
|
||||
tokens = []
|
||||
for token, _ in zip(generate(prompt, model, args.temp), range(args.max_tokens)):
|
||||
tokens.append(token)
|
||||
|
||||
if (len(tokens) % 10) == 0:
|
||||
mx.eval(tokens)
|
||||
eos_index = next(
|
||||
(i for i, t in enumerate(tokens) if t.item() == tokenizer.eos_token_id),
|
||||
None,
|
||||
)
|
||||
|
||||
if eos_index is not None:
|
||||
tokens = tokens[:eos_index]
|
||||
|
||||
s = tokenizer.decode([t.item() for t in tokens])
|
||||
print(s, end="", flush=True)
|
||||
tokens = []
|
||||
if eos_index is not None:
|
||||
break
|
||||
|
||||
mx.eval(tokens)
|
||||
s = tokenizer.decode([t.item() for t in tokens])
|
||||
print(s, flush=True)
|
||||
|
Loading…
Reference in New Issue
Block a user