refactor: make the phi2 example can be directly load the model from hf without convert needed (#253)

* refactor: make the phi2 example can be directly load the model from hf without convert needed

* chore: add super().__init__() for all module, otherwise will cause error in lora
This commit is contained in:
Anchen 2024-01-08 06:01:23 -08:00 committed by GitHub
parent 9742ad0f51
commit 6e5b0de4d3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 313 additions and 170 deletions

View File

@ -7,63 +7,52 @@ GPT-4 outputs and clean web text.
Phi-2 efficiently runs on Apple silicon devices with 8GB of memory in 16-bit
precision.
## Setup
### Setup
Download and convert the model:
```sh
python convert.py
```
To generate a 4-bit quantized model use the `-q` flag:
Install the dependencies:
```
python convert.py -q
pip install -r requirements.txt
```
By default, the conversion script will make the directory `mlx_model` and save
the converted `weights.npz`, and `config.json` there.
> [!TIP] Alternatively, you can also download a few converted checkpoints from
> the [MLX Community](https://huggingface.co/mlx-community) organization on
> Hugging Face and skip the conversion step.
## Generate
To generate text with the default prompt:
```sh
python phi2.py
### Run
```
Should give the output:
python generate.py --model <model_path> --prompt "hello"
```
For example:
```
Answer: Mathematics is like a lighthouse that guides us through the darkness of
uncertainty. Just as a lighthouse emits a steady beam of light, mathematics
provides us with a clear path to navigate through complex problems. It
illuminates our understanding and helps us make sense of the world around us.
python generate.py --model microsoft/phi-2 --prompt "hello"
```
The `<model_path>` should be either a path to a local directory or a Hugging
Face repo with weights stored in `safetensors` format. If you use a repo from
the Hugging Face Hub, then the model will be downloaded and cached the first
time you run it.
Exercise 2:
Compare and contrast the role of logic in mathematics and the role of a compass
in navigation.
Run `python generate.py --help` to see all the options.
Answer: Logic in mathematics is like a compass in navigation. It helps
### Convert new models
You can convert (change the data type or quantize) models using the
`convert.py` script. This script takes a Hugging Face repo as input and outputs
a model directory (which you can optionally also upload to Hugging Face).
For example, to make 4-bit quantized a model, run:
```
python convert.py --hf-path <hf_repo> -q
```
To use your own prompt:
For more options run:
```sh
python phi2.py --prompt <your prompt here> --max-tokens <max_tokens_to_generate>
```
python convert.py --help
```
To see a list of options run:
```sh
python phi2.py --help
```
You can upload new models to the [Hugging Face MLX
Community](https://huggingface.co/mlx-community) by specifying `--upload-name``
to `convert.py`.
[^1]: For more details on the model see the [blog post](
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/)
and the [Hugging Face repo](https://huggingface.co/microsoft/phi-2)
and the [Hugging Face repo](https://huggingface.co/microsoft/phi-2)

View File

@ -1,23 +1,43 @@
import argparse
import copy
import glob
import json
from pathlib import Path
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from mlx.utils import tree_flatten, tree_map, tree_unflatten
from phi2 import ModelArgs, Phi2
from transformers import AutoModelForCausalLM
import transformers
from huggingface_hub import snapshot_download
from mlx.utils import tree_flatten
from phi2 import Model, ModelArgs
def fetch_from_hub(hf_path: str):
model_path = snapshot_download(
repo_id=hf_path,
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
)
weight_files = glob.glob(f"{model_path}/*.safetensors")
if len(weight_files) == 0:
raise FileNotFoundError("No safetensors found in {}".format(model_path))
weights = {}
for wf in weight_files:
weights.update(mx.load(wf).items())
config = transformers.AutoConfig.from_pretrained(hf_path, trust_remote_code=True)
tokenizer = transformers.AutoTokenizer.from_pretrained(
hf_path,
)
return weights, config.to_dict(), tokenizer
def quantize(weights, config, args):
quantized_config = copy.deepcopy(config)
# Load the model:
model = Phi2(ModelArgs())
weights = tree_map(mx.array, weights)
model.update(tree_unflatten(list(weights.items())))
model = Model(ModelArgs.from_dict(config))
model.load_weights(list(weights.items()))
# Quantize the model:
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
@ -32,22 +52,69 @@ def quantize(weights, config, args):
return quantized_weights, quantized_config
def replace_key(key: str) -> str:
if "wte.weight" in key:
key = "wte.weight"
if ".mlp" in key:
key = key.replace(".mlp", "")
return key
def make_shards(weights: dict, max_file_size_gibibyte: int = 15):
max_file_size_bytes = max_file_size_gibibyte << 30
shards = []
shard, shard_size = {}, 0
for k, v in weights.items():
estimated_size = v.size * v.dtype.size
if shard_size + estimated_size > max_file_size_bytes:
shards.append(shard)
shard, shard_size = {}, 0
shard[k] = v
shard_size += estimated_size
shards.append(shard)
return shards
def convert():
parser = argparse.ArgumentParser(description="Convert Phi-2 weights to MLX")
def upload_to_hub(path: str, name: str, hf_path: str):
import os
from huggingface_hub import HfApi, ModelCard, logging
repo_id = f"mlx-community/{name}"
card = ModelCard.load(hf_path)
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
card.text = f"""
# {name}
This model was converted to MLX format from [`{hf_path}`]().
Refer to the [original model card](https://huggingface.co/{hf_path}) for more details on the model.
## Use with mlx
```bash
pip install mlx
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/llms/hf_llm
python generate.py --model {repo_id} --prompt "My name is"
```
"""
card.save(os.path.join(path, "README.md"))
logging.set_verbosity_info()
api = HfApi()
api.create_repo(repo_id=repo_id, exist_ok=True)
api.upload_folder(
folder_path=path,
repo_id=repo_id,
repo_type="model",
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Convert Hugging Face model to MLX format"
)
parser.add_argument(
"--hf-path",
type=str,
help="Path to the Hugging Face model.",
)
parser.add_argument(
"--mlx-path",
type=str,
default="mlx_model",
help="The path to save the MLX model.",
help="Path to save the MLX model.",
)
parser.add_argument(
"-q",
@ -67,26 +134,39 @@ def convert():
type=int,
default=4,
)
parser.add_argument(
"--dtype",
help="Type to save the parameters, ignored if -q is given.",
type=str,
choices=["float16", "bfloat16", "float32"],
default="float16",
)
parser.add_argument(
"--upload-name",
help="The name of model to upload to Hugging Face MLX Community",
type=str,
default=None,
)
args = parser.parse_args()
print("[INFO] Loading")
weights, config, tokenizer = fetch_from_hub(args.hf_path)
dtype = mx.float16 if args.quantize else getattr(mx, args.dtype)
weights = {k: v.astype(dtype) for k, v in weights.items()}
if args.quantize:
print("[INFO] Quantizing")
weights, config = quantize(weights, config, args)
mlx_path = Path(args.mlx_path)
mlx_path.mkdir(parents=True, exist_ok=True)
model = AutoModelForCausalLM.from_pretrained(
"microsoft/phi-2", torch_dtype="auto", trust_remote_code=True
)
state_dict = model.state_dict()
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
params = {}
if args.quantize:
print("[INFO] Quantizing")
weights, params = quantize(weights, params, args)
np.savez(str(mlx_path / "weights.npz"), **weights)
shards = make_shards(weights)
for i, shard in enumerate(shards):
mx.save_safetensors(str(mlx_path / f"weights.{i:02d}.safetensors"), shard)
tokenizer.save_pretrained(mlx_path)
with open(mlx_path / "config.json", "w") as fid:
params["model_type"] = "phi2"
json.dump(params, fid, indent=4)
json.dump(config, fid, indent=4)
if __name__ == "__main__":
convert()
if args.upload_name is not None:
upload_to_hub(mlx_path, args.upload_name, args.hf_path)

91
llms/phi2/generate.py Normal file
View File

@ -0,0 +1,91 @@
# Copyright © 2023 Apple Inc.
import argparse
import time
import mlx.core as mx
import phi2
import transformers
def generate(
model: phi2.Model,
tokenizer: transformers.AutoTokenizer,
prompt: str,
max_tokens: int,
temp: float = 0.0,
):
print("[INFO] Generating with Phi-2...", flush=True)
print(args.prompt, end="", flush=True)
prompt = tokenizer(
prompt,
return_tensors="np",
return_attention_mask=False,
)[
"input_ids"
][0]
prompt = mx.array(prompt)
tic = time.time()
tokens = []
skip = 0
for token, n in zip(
phi2.generate(prompt, model, args.temp),
range(args.max_tokens),
):
if token == tokenizer.eos_token_id:
break
if n == 0:
prompt_time = time.time() - tic
tic = time.time()
tokens.append(token.item())
# if (n + 1) % 10 == 0:
s = tokenizer.decode(tokens)
print(s[skip:], end="", flush=True)
skip = len(s)
print(tokenizer.decode(tokens)[skip:], flush=True)
gen_time = time.time() - tic
print("=" * 10)
if len(tokens) == 0:
print("No tokens generated for this prompt")
return
prompt_tps = prompt.size / prompt_time
gen_tps = (len(tokens) - 1) / gen_time
print(f"Prompt: {prompt_tps:.3f} tokens-per-sec")
print(f"Generation: {gen_tps:.3f} tokens-per-sec")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="inference script")
parser.add_argument(
"--model",
type=str,
default="mlx_model",
help="The path to the local model directory or Hugging Face repo.",
)
parser.add_argument(
"--prompt",
help="The message to be processed by the model",
default="Write a detailed analogy between mathematics and a lighthouse.",
)
parser.add_argument(
"--max-tokens",
"-m",
type=int,
default=100,
help="Maximum number of tokens to generate",
)
parser.add_argument(
"--temp",
help="The sampling temperature.",
type=float,
default=0.0,
)
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
args = parser.parse_args()
mx.random.seed(args.seed)
model, tokenizer = phi2.load(args.model)
generate(model, tokenizer, args.prompt, args.max_tokens, args.temp)

View File

@ -1,4 +1,6 @@
import argparse
import glob
import inspect
import json
import math
from dataclasses import dataclass
@ -7,6 +9,7 @@ from typing import Optional
import mlx.core as mx
import mlx.nn as nn
from huggingface_hub import snapshot_download
from mlx.utils import tree_unflatten
from transformers import AutoTokenizer
@ -20,6 +23,16 @@ class ModelArgs:
num_layers: int = 32
rotary_dim: int = 32
@classmethod
def from_dict(cls, params):
return cls(
**{
k: v
for k, v in params.items()
if k in inspect.signature(cls).parameters
}
)
class LayerNorm(nn.LayerNorm):
def __call__(self, x: mx.array) -> mx.array:
@ -75,6 +88,17 @@ class RoPEAttention(nn.Module):
return self.out_proj(values_hat), (keys, values)
class MLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.fc1 = nn.Linear(dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, dim)
self.act = nn.GELU(approx="precise")
def __call__(self, x) -> mx.array:
return self.fc2(self.act(self.fc1(x)))
class ParallelBlock(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
@ -82,23 +106,23 @@ class ParallelBlock(nn.Module):
mlp_dims = dims * 4
self.mixer = RoPEAttention(dims, config.num_heads, config.rotary_dim)
self.ln = LayerNorm(dims)
self.fc1 = nn.Linear(dims, mlp_dims)
self.fc2 = nn.Linear(mlp_dims, dims)
self.act = nn.GELU(approx="precise")
self.mlp = MLP(dims, mlp_dims)
def __call__(self, x, mask, cache):
h = self.ln(x)
attn_h, cache = self.mixer(h, mask, cache)
ff_h = self.fc2(self.act(self.fc1(h)))
ff_h = self.mlp(h)
return attn_h + ff_h + x, cache
class TransformerDecoder(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.embd = Embd(config)
self.h = [ParallelBlock(config) for i in range(config.num_layers)]
def __call__(self, x, mask, cache):
x = self.embd(x)
if cache is None:
cache = [None] * len(self.h)
@ -107,8 +131,18 @@ class TransformerDecoder(nn.Module):
return x, cache
class Embd(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.wte = nn.Embedding(config.num_vocab, config.model_dim)
def __call__(self, x):
return self.wte(x)
class OutputHead(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.ln = LayerNorm(config.model_dim)
self.linear = nn.Linear(config.model_dim, config.num_vocab)
@ -116,20 +150,18 @@ class OutputHead(nn.Module):
return self.linear(self.ln(inputs))
class Phi2(nn.Module):
class Model(nn.Module):
def __init__(self, config: ModelArgs):
self.wte = nn.Embedding(config.num_vocab, config.model_dim)
super().__init__()
self.transformer = TransformerDecoder(config)
self.lm_head = OutputHead(config)
def __call__(
self,
inputs: mx.array,
x: mx.array,
mask: mx.array = None,
cache: mx.array = None,
) -> tuple[mx.array, mx.array]:
x = self.wte(inputs)
mask = None
if x.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
@ -139,104 +171,55 @@ class Phi2(nn.Module):
return self.lm_head(y), cache
def generate(prompt: mx.array, model: Phi2, temp: Optional[float] = 0.0):
def generate(prompt: mx.array, model: Model, temp: float = 0.0):
def sample(logits):
if temp == 0:
return mx.argmax(logits, axis=-1)
else:
return mx.random.categorical(logits * (1 / temp))
logits, cache = model(prompt)
y = sample(logits[:, -1, :])
yield y
y = prompt
cache = None
while True:
logits, cache = model(y[:, None], cache=cache)
y = sample(logits.squeeze(1))
logits, cache = model(y[None], cache=cache)
logits = logits[:, -1, :]
y = sample(logits)
yield y
def load_model(model_path: str):
model = Phi2(ModelArgs())
model_path = Path(model_path)
def load(path_or_hf_repo: str):
# If the path exists, it will try to load model form it
# otherwise download and cache from the hf_repo and cache
model_path = Path(path_or_hf_repo)
if not model_path.exists():
model_path = Path(
snapshot_download(
repo_id=path_or_hf_repo,
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
)
)
with open(model_path / "config.json", "r") as f:
config = json.loads(f.read())
config.pop("model_type", None)
quantization = config.pop("quantization", None)
weights = mx.load(str(model_path / "weights.npz"))
weights = tree_unflatten(list(weights.items()))
quantization = config.get("quantization", None)
model_args = ModelArgs.from_dict(config)
weight_files = glob.glob(str(model_path / "*.safetensors"))
if len(weight_files) == 0:
raise FileNotFoundError("No safetensors found in {}".format(model_path))
weights = {}
for wf in weight_files:
weights.update(mx.load(wf).items())
model = Model(model_args)
if quantization is not None:
nn.QuantizedLinear.quantize_module(model, **quantization)
model.update(weights)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
model.load_weights(list(weights.items()))
mx.eval(model.parameters())
tokenizer = AutoTokenizer.from_pretrained(
model_path,
)
return model, tokenizer
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Phi-2 inference script")
parser.add_argument(
"--model-path",
type=str,
default="mlx_model",
help="The path to the model weights",
)
parser.add_argument(
"--prompt",
help="The message to be processed by the model",
default="Write a detailed analogy between mathematics and a lighthouse.",
)
parser.add_argument(
"--max-tokens",
"-m",
type=int,
default=100,
help="Maximum number of tokens to generate",
)
parser.add_argument(
"--temp",
help="The sampling temperature.",
type=float,
default=0.0,
)
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
args = parser.parse_args()
mx.random.seed(args.seed)
model, tokenizer = load_model(args.model_path)
prompt = tokenizer(
args.prompt,
return_tensors="np",
return_attention_mask=False,
)["input_ids"]
prompt = mx.array(prompt)
print("[INFO] Generating with Phi-2...", flush=True)
print(args.prompt, end="", flush=True)
tokens = []
for token, _ in zip(generate(prompt, model, args.temp), range(args.max_tokens)):
tokens.append(token)
if (len(tokens) % 10) == 0:
mx.eval(tokens)
eos_index = next(
(i for i, t in enumerate(tokens) if t.item() == tokenizer.eos_token_id),
None,
)
if eos_index is not None:
tokens = tokens[:eos_index]
s = tokenizer.decode([t.item() for t in tokens])
print(s, end="", flush=True)
tokens = []
if eos_index is not None:
break
mx.eval(tokens)
s = tokenizer.decode([t.item() for t in tokens])
print(s, flush=True)