mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-30 02:53:41 +08:00
Add model and tokenizer options
This commit is contained in:
parent
a8ef549546
commit
702ecbb671
@ -1,3 +1,4 @@
|
|||||||
|
import argparse
|
||||||
from transformers import AutoModelForCausalLM
|
from transformers import AutoModelForCausalLM
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
@ -10,9 +11,9 @@ def replace_key(key: str) -> str:
|
|||||||
return key
|
return key
|
||||||
|
|
||||||
|
|
||||||
def convert():
|
def convert(model_path: str = "Qwen/Qwen-1_8B"):
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
"Qwen/Qwen-1_8B", trust_remote_code=True
|
model_path, trust_remote_code=True
|
||||||
)
|
)
|
||||||
state_dict = model.state_dict()
|
state_dict = model.state_dict()
|
||||||
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
|
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
|
||||||
@ -20,4 +21,14 @@ def convert():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
convert()
|
parser = argparse.ArgumentParser(description="Convert Qwen model to npz")
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--model",
|
||||||
|
help="The huggingface model to be converted",
|
||||||
|
default="Qwen/Qwen-1_8B",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
convert(args.model)
|
||||||
|
45
qwen/qwen.py
45
qwen/qwen.py
@ -1,14 +1,12 @@
|
|||||||
# The architecture of Qwen is similar to Llama.
|
# The architecture of qwen is similar to Llama.
|
||||||
|
# This inference script is mainly for compatibility with the huggingface model of qwen.
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
from typing import Any
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
import mlx.nn as nn
|
import mlx.nn as nn
|
||||||
|
|
||||||
from mlx.utils import tree_unflatten
|
from mlx.utils import tree_unflatten
|
||||||
|
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
|
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
|
||||||
@ -45,8 +43,10 @@ class QWenAttntion(nn.Module):
|
|||||||
|
|
||||||
self.proj_size = args.kv_channels * self.num_attention_heads
|
self.proj_size = args.kv_channels * self.num_attention_heads
|
||||||
|
|
||||||
self.c_attn = nn.Linear(self.hidden_size, self.proj_size * 3, bias=True)
|
self.c_attn = nn.Linear(
|
||||||
self.c_proj = nn.Linear(self.hidden_size, self.proj_size, bias=not args.no_bias)
|
self.hidden_size, self.proj_size * 3, bias=True)
|
||||||
|
self.c_proj = nn.Linear(
|
||||||
|
self.hidden_size, self.proj_size, bias=not args.no_bias)
|
||||||
|
|
||||||
self.scale = self.hidden_size_per_attention_head**-0.5
|
self.scale = self.hidden_size_per_attention_head**-0.5
|
||||||
|
|
||||||
@ -55,7 +55,7 @@ class QWenAttntion(nn.Module):
|
|||||||
|
|
||||||
q, k, v = mx.split(qkv, 3, axis=-1)
|
q, k, v = mx.split(qkv, 3, axis=-1)
|
||||||
|
|
||||||
B, L, D = q.shape
|
B, L, _ = q.shape
|
||||||
|
|
||||||
q = q.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3)
|
q = q.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3)
|
||||||
k = k.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3)
|
k = k.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3)
|
||||||
@ -100,7 +100,7 @@ class QWenMlp(nn.Module):
|
|||||||
args.intermediate_size // 2, args.hidden_size, bias=not args.no_bias
|
args.intermediate_size // 2, args.hidden_size, bias=not args.no_bias
|
||||||
)
|
)
|
||||||
|
|
||||||
def __call__(self, x) -> Any:
|
def __call__(self, x):
|
||||||
a1 = self.w1(x)
|
a1 = self.w1(x)
|
||||||
a2 = self.w2(x)
|
a2 = self.w2(x)
|
||||||
intermediate_parallel = a1 * nn.silu(a2)
|
intermediate_parallel = a1 * nn.silu(a2)
|
||||||
@ -146,7 +146,8 @@ class QWen(nn.Module):
|
|||||||
|
|
||||||
mask = None
|
mask = None
|
||||||
if x.shape[1] > 1:
|
if x.shape[1] > 1:
|
||||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(
|
||||||
|
x.shape[1])
|
||||||
mask = mask.astype(x.dtype)
|
mask = mask.astype(x.dtype)
|
||||||
|
|
||||||
if cache is None:
|
if cache is None:
|
||||||
@ -177,21 +178,29 @@ def generate(prompt: mx.array, model: QWen, temp: 0.0):
|
|||||||
yield y
|
yield y
|
||||||
|
|
||||||
|
|
||||||
def load_model():
|
def load_model(tokenizer_path: str = "Qwen/Qwen-1_8B"):
|
||||||
model = QWen(ModelArgs())
|
model = QWen(ModelArgs())
|
||||||
weights = mx.load("weights.npz")
|
weights = mx.load("weights.npz")
|
||||||
model.update(tree_unflatten(list(weights.items())))
|
model.update(tree_unflatten(list(weights.items())))
|
||||||
# print([x for x, _ in tree_flatten(model.parameters())])
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-1_8B", trust_remote_code=True)
|
tokenizer_path, trust_remote_code=True)
|
||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(description="Phi-2 inference script")
|
# The infernece code and arguments were mainly derived from phi-2 example.
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="Qwen inference script")
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokenizer",
|
||||||
|
help="The tokenizer to be used, defaults to Qwen/Qwen-1_8B",
|
||||||
|
default="Qwen/Qwen-1_8B",
|
||||||
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--prompt",
|
"--prompt",
|
||||||
help="The message to be processed by the model",
|
help="The message to be processed by the model",
|
||||||
default="Write a detailed analogy between mathematics and a lighthouse.",
|
# The example from the official huggingface repo of Qwen
|
||||||
|
default="蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max_tokens",
|
"--max_tokens",
|
||||||
@ -211,7 +220,7 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
mx.random.seed(args.seed)
|
mx.random.seed(args.seed)
|
||||||
|
|
||||||
model, tokenizer = load_model()
|
model, tokenizer = load_model(args.tokenizer)
|
||||||
|
|
||||||
prompt = tokenizer(
|
prompt = tokenizer(
|
||||||
args.prompt,
|
args.prompt,
|
||||||
@ -221,7 +230,6 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
prompt = mx.array(prompt)
|
prompt = mx.array(prompt)
|
||||||
|
|
||||||
print("[INFO] Generating with QWen...", flush=True)
|
|
||||||
print(args.prompt, end="", flush=True)
|
print(args.prompt, end="", flush=True)
|
||||||
|
|
||||||
tokens = []
|
tokens = []
|
||||||
@ -231,7 +239,8 @@ if __name__ == "__main__":
|
|||||||
if (len(tokens) % 10) == 0:
|
if (len(tokens) % 10) == 0:
|
||||||
mx.eval(tokens)
|
mx.eval(tokens)
|
||||||
eos_index = next(
|
eos_index = next(
|
||||||
(i for i, t in enumerate(tokens) if t.item() == tokenizer.eos_token_id),
|
(i for i, t in enumerate(tokens)
|
||||||
|
if t.item() == tokenizer.eos_token_id),
|
||||||
None,
|
None,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user