training mode working too got from 2 toks/sec to 30 toks/sec with raw 1.5B model

This commit is contained in:
Goekdeniz-Guelmez 2025-02-21 22:42:15 +01:00
parent 6086137131
commit 710bc1490e

View File

@ -112,51 +112,90 @@ def r1_count_xml(prompts: list, completions: list, answer: list, **kwargs) -> li
return scores
def generate_grpo(model: nn.Module, prompts, max_tokens, tokenizer, group_size):
def generate_grpo(model: nn.Module, prompts, max_tokens, tokenizer, group_size, is_training=False):
if len(prompts.shape) == 1:
prompts = prompts[None, :]
if prompts.shape[1] == 0:
return None
model.eval()
batch_size = prompts.shape[0] * group_size
expanded_prompts = mx.repeat(prompts, group_size, axis=0)
mx.eval(expanded_prompts)
results = []
tokens_generated = 0
start_time = time.perf_counter()
try:
for idx in range(batch_size):
current_tokens = []
generator = generate_step(
expanded_prompts[idx],
model,
max_tokens=max_tokens,
sampler=lambda x: mx.argmax(x, axis=-1)
)
for idx in range(batch_size):
current_prompt = expanded_prompts[idx:idx+1]
mx.eval(current_prompt)
current_tokens = []
try:
if is_training:
# Initialize with prompt
current_input = current_prompt[0]
mx.eval(current_input)
while len(current_tokens) < max_tokens:
# Generate one token at a time
logits = model(current_input[None])
next_token = mx.random.categorical(logits[:, -1, :])
token = next_token.item()
current_tokens.append(token)
tokens_generated += 1
# Clear intermediate results
mx.eval(next_token)
del logits
if token == tokenizer.eos_token_id:
break
# Update input for next iteration
current_input = mx.array([token])
mx.eval(current_input)
# Clear cache periodically
if len(current_tokens) % 8 == 0:
mx.metal.clear_cache()
else:
generator = generate_step(
current_prompt[0],
model,
max_tokens=max_tokens,
sampler=lambda x: mx.random.categorical(x)
)
for token, _ in generator:
current_tokens.append(token)
tokens_generated += 1
if token == tokenizer.eos_token_id:
break
# Collect all tokens first
for tokens, _ in generator:
current_tokens.append(tokens)
tokens_generated += 1
if tokens == tokenizer.eos_token_id:
break
if current_tokens:
token_array = mx.array(current_tokens)
mx.eval(token_array)
results.append(token_array)
del token_array
# Convert to array after collection
results.append(mx.array(current_tokens))
mx.metal.clear_cache()
except Exception as e:
print(f"Generation failed for sequence {idx}: {e}")
continue
# Final evaluation of all results
mx.eval(results)
generation_time = time.perf_counter() - start_time
print(f"Generated {tokens_generated} tokens in {generation_time:.2f}s ({tokens_generated/generation_time:.2f} tokens/s)")
return results
mx.metal.clear_cache()
except Exception as e:
print(f"Generation error: {str(e)}")
if not results:
print("No successful generations")
return None
mx.eval(results)
generation_time = time.perf_counter() - start_time
print(f"Generated {tokens_generated} tokens in {generation_time:.2f}s ({tokens_generated/generation_time:.2f} tokens/s)")
return results
def get_per_token_logps(model: nn.Module, inputs, lengths):
logits = model(inputs).astype(mx.float16)
@ -209,7 +248,8 @@ def grpo_loss(
prompt_tensor,
max_tokens,
tokenizer,
group_size
group_size,
True
)
if completions is not None:
@ -221,6 +261,8 @@ def grpo_loss(
except Exception as e:
print(f"Generation error: {e}")
continue
mx.metal.clear_cache()
expanded_answers = []
expanded_prompts = []