first succesfull training run

This commit is contained in:
Goekdeniz-Guelmez
2025-02-04 09:18:45 +01:00
parent ca32424043
commit 7173840283
3 changed files with 68 additions and 66 deletions

View File

@@ -12,8 +12,6 @@ from mlx.utils import tree_flatten
from .trainer import grad_checkpoint, TrainingArgs, TrainingCallback, average_gradients, iterate_batches
from mlx_lm.utils import generate_step
@dataclass
class GRPOTrainingArgs(TrainingArgs):
@@ -27,6 +25,9 @@ class GRPOTrainingArgs(TrainingArgs):
epsilon: float = field(
default=1e-4, metadata={"help": "The Epsilon for numerical stability."}
)
max_completion_length: int = field(
default=512, metadata={"help": "Number of Generations."}
)
reference_model_path: str = field(
default=None,
metadata={
@@ -36,7 +37,6 @@ class GRPOTrainingArgs(TrainingArgs):
def generate_grpo(model, prompt, max_tokens, tokenizer, temperature=1.0):
model.eval()
if len(prompt.shape) == 1:
prompt = prompt[None, :]
@@ -58,11 +58,7 @@ def generate_grpo(model, prompt, max_tokens, tokenizer, temperature=1.0):
token_value = next_token.item()
generated.append(next_token)
# Clear intermediate tensors
del logits, token_logits, probs
mx.metal.clear_cache()
current_prompt = mx.concatenate([current_prompt, next_token[None]])
if token_value == tokenizer.eos_token_id:
break
@@ -72,12 +68,6 @@ def generate_grpo(model, prompt, max_tokens, tokenizer, temperature=1.0):
result = mx.concatenate([prompt[0], mx.stack(generated)])
mx.eval(result)
model.train()
# Clear generated tokens
del generated
mx.metal.clear_cache()
return result
@@ -192,11 +182,6 @@ def get_per_token_logps(model, inputs, lengths):
).squeeze(-1) # [seq_len]
per_token_logps.append(token_log_probs)
# Clean up intermediates
del seq_logits, seq_targets, log_probs, token_log_probs
mx.metal.clear_cache()
return per_token_logps
@@ -232,15 +217,9 @@ def grpo_loss(
all_completions.append(completion_ids)
all_completion_texts.append(completion_text)
del completion_ids
mx.metal.clear_cache()
except Exception as e:
print(f"Generation error: {e}")
continue
del prompt_tensor
mx.metal.clear_cache()
# Prepare inputs
expanded_answers = []
@@ -264,25 +243,11 @@ def grpo_loss(
mask = mx.ones_like(completion_ids)
padded_completions.append(padded_ids)
attention_masks.append(mask)
del completion_ids
if padding_length > 0:
del padding
del mask
mx.metal.clear_cache()
inputs = mx.stack(padded_completions)
attention_mask = mx.stack(attention_masks)
lengths = attention_mask.sum(axis=1)
del padded_completions, attention_masks
mx.metal.clear_cache()
# Get logits and compute log probabilities
logits = model(inputs).astype(mx.float32)
log_probs = nn.log_softmax(logits[:, :-1, :], axis=-1)
targets = inputs[:, 1:]
# Current policy probabilities
token_log_probs = get_per_token_logps(model, inputs, lengths)
@@ -302,9 +267,6 @@ def grpo_loss(
padded_log_probs.append(mx.concatenate([token_log_probs[i], padding]))
padded_ref_log_probs.append(mx.concatenate([ref_token_log_probs[i], padding]))
del padding
mx.metal.clear_cache()
token_log_probs = mx.stack(padded_log_probs)
ref_token_log_probs = mx.stack(padded_ref_log_probs)
@@ -360,10 +322,6 @@ def grpo_loss(
reward_metrics[f'{func_name}_mean'] = mx.mean(func_rewards)
reward_metrics[f'{func_name}_std'] = mx.std(func_rewards)
# Clean up
del all_completions
mx.metal.clear_cache()
metrics = {
'total_rewards_mean': mx.mean(rewards),
'total_rewards_std': mx.std(rewards),
@@ -440,7 +398,7 @@ def evaluate_grpo(
group_size: int,
max_seq_length,
reward_funcs = None,
loss: callable = grpo_loss,
loss_fn: callable = grpo_loss,
iterate_batches: callable = iterate_grpo_batches
):
"""
@@ -466,7 +424,7 @@ def evaluate_grpo(
),
):
# Calculate loss for current batch
losses, toks, metrics = loss(
losses, toks, metrics = loss_fn(
model=model,
tokenizer=tokenizer,
batch=batch,
@@ -518,7 +476,7 @@ def train_grpo(
r1_count_xml
],
args: GRPOTrainingArgs = GRPOTrainingArgs(),
loss: callable = grpo_loss,
loss_fn: callable = grpo_loss,
iterate_batches: callable = iterate_grpo_batches,
training_callback: TrainingCallback = None,
):
@@ -546,7 +504,7 @@ def train_grpo(
group_size=args.group_size,
epsilon=args.epsilon,
ref_model=ref_model,
max_tokens=args.max_seq_length,
max_tokens=args.max_completion_length,
)
# All reduce the gradients if running in distributed mode
@@ -557,22 +515,23 @@ def train_grpo(
return loss, toks, metrics
loss_value_and_grad = nn.value_and_grad(model, loss)
loss_value_and_grad = nn.value_and_grad(model, loss_fn)
losses = 0
n_tokens = 0
steps = 0
trained_tokens = 0
accumulated_metrics = {
'rewards': 0,
'rewards_std': 0,
'grouped_rewards': 0,
'total_rewards_mean': 0,
'total_rewards_std': 0,
'grouped_rewards_mean': 0,
'grouped_rewards_std': 0,
'kl': 0
}
for i in range(len(reward_funcs)):
accumulated_metrics[f'reward_func_{i}_mean'] = 0
accumulated_metrics[f'reward_func_{i}_std'] = 0
for reward_func in reward_funcs:
func_name = reward_func.__name__
accumulated_metrics[f'{func_name}_mean'] = 0
accumulated_metrics[f'{func_name}_std'] = 0
start = time.perf_counter()
for it, batch in zip(
@@ -592,7 +551,7 @@ def train_grpo(
val_loss, val_ntokens, val_metrics = evaluate_grpo(
model=model,
dataset=val_dataset,
loss=loss,
loss_fn=loss_fn,
ref_model=ref_model,
reward_funcs=reward_funcs,
tokenizer=tokenizer,
@@ -675,8 +634,8 @@ def train_grpo(
for i, reward_func in enumerate(reward_funcs):
func_name = reward_func.__name__
train_metrics_str += (
f", Reward func {reward_func.__name__} mean {avg_metrics[f'reward_func_{reward_func.__name__}_mean']:.3f}, "
f"Reward func {reward_func.__name__} std {avg_metrics[f'reward_func_{reward_func.__name__}_std']:.3f}"
f", {func_name} mean {avg_metrics[f'{func_name}_mean']:.3f}, "
f"{func_name} std {avg_metrics[f'{func_name}_std']:.3f}"
)
print(