mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-28 23:49:43 +08:00
rebase + nits
This commit is contained in:
parent
40438b1371
commit
7499720b09
@ -241,24 +241,25 @@ Refer to the documentation for the model you are fine-tuning for more details.
|
||||
{"prompt": "What is the capital of France?", "completion": "Paris."}
|
||||
```
|
||||
|
||||
`text`:
|
||||
|
||||
```jsonl
|
||||
{"text": "This is an example for the model."}
|
||||
```
|
||||
|
||||
Note, the format is automatically determined by the dataset.
|
||||
|
||||
For the completion data format, a different key can be used for the _prompt_ and for the _completion_ by specifying
|
||||
the following, for example, in the YAML config:
|
||||
For the `completions` data format, a different key can be used for the prompt
|
||||
and completion by specifying the following in the YAML config:
|
||||
|
||||
```yaml
|
||||
prompt_feature: "input"
|
||||
completion_feature: "output"
|
||||
```
|
||||
|
||||
Here, `input` is now the expected key instead of "prompt" and `output` is the expected key instead of "completion".
|
||||
Note also, keys in each line not expected by the loader will be ignored.
|
||||
Here, `"input"` is the expected key instead of the default `"prompt"`, and
|
||||
`"output"` is the expected key instead of `"completion"`.
|
||||
|
||||
`text`:
|
||||
|
||||
```jsonl
|
||||
{"text": "This is an example for the model."}
|
||||
```
|
||||
|
||||
Note, the format is automatically determined by the dataset. Note also, keys
|
||||
in each line not expected by the loader will be ignored.
|
||||
|
||||
> [!NOTE]
|
||||
> Each example in the datasets must be on a single line. Do not put more than
|
||||
|
@ -61,8 +61,6 @@ CONFIG_DEFAULTS = {
|
||||
"config": None,
|
||||
"grad_checkpoint": False,
|
||||
"lr_schedule": None,
|
||||
"prompt_feature": "prompt",
|
||||
"completion_feature": "completion",
|
||||
"lora_parameters": {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0},
|
||||
}
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from transformers import PreTrainedTokenizer
|
||||
|
||||
@ -61,8 +61,8 @@ class CompletionsDataset:
|
||||
self,
|
||||
data: List[Dict[str, str]],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
prompt_key: str = "prompt",
|
||||
completion_key: str = "completion",
|
||||
prompt_key: str,
|
||||
completion_key: str,
|
||||
):
|
||||
self._data = [
|
||||
tokenizer.apply_chat_template(
|
||||
@ -81,17 +81,15 @@ class CompletionsDataset:
|
||||
return len(self._data)
|
||||
|
||||
|
||||
<<<<<<< HEAD
|
||||
def create_dataset(
|
||||
data,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
prompt_feature: Optional[str] = None,
|
||||
completion_feature: Optional[str] = None,
|
||||
):
|
||||
sample = data[0]
|
||||
prompt_feature = prompt_feature or "prompt"
|
||||
completion_feature = completion_feature or "completion"
|
||||
|
||||
sample = data[0]
|
||||
if "messages" in sample:
|
||||
return ChatDataset(data, tokenizer)
|
||||
elif prompt_feature in sample and completion_feature in sample:
|
||||
@ -108,8 +106,8 @@ def create_dataset(
|
||||
def load_local_dataset(
|
||||
data_path: Path,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
prompt_feature: str = None,
|
||||
completion_feature: str = None,
|
||||
prompt_feature: Optional[str] = None,
|
||||
completion_feature: Optional[str] = None,
|
||||
):
|
||||
def load_subset(path):
|
||||
if not path.exists():
|
||||
@ -126,8 +124,8 @@ def load_local_dataset(
|
||||
def load_hf_dataset(
|
||||
data_id: str,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
prompt_feature: str = None,
|
||||
completion_feature: str = None,
|
||||
prompt_feature: Optional[str] = None,
|
||||
completion_feature: Optional[str] = None,
|
||||
):
|
||||
from datasets import exceptions, load_dataset
|
||||
|
||||
@ -199,14 +197,17 @@ def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||
train, valid, test = load_custom_hf_dataset(args, tokenizer)
|
||||
else:
|
||||
data_path = Path(args.data)
|
||||
|
||||
prompt_feature = getattr(args, "prompt_feature", None)
|
||||
completion_feature = getattr(args, "completion_feature", None)
|
||||
if data_path.exists():
|
||||
train, valid, test = load_local_dataset(
|
||||
data_path, tokenizer, args.prompt_feature, args.completion_feature
|
||||
data_path, tokenizer, prompt_feature, completion_feature
|
||||
)
|
||||
else:
|
||||
print(f"Loading Hugging Face dataset {args.data}.")
|
||||
train, valid, test = load_hf_dataset(
|
||||
args.data, tokenizer, args.prompt_feature, args.completion_feature
|
||||
args.data, tokenizer, prompt_feature, completion_feature
|
||||
)
|
||||
|
||||
if args.train and len(train) == 0:
|
||||
|
Loading…
Reference in New Issue
Block a user