adding multi token input and correct cache handling in ssm step

This commit is contained in:
Goekdeniz-Guelmez 2024-10-22 20:44:23 +02:00
parent 5326d9373a
commit 758597eaa8
2 changed files with 251 additions and 137 deletions

View File

@ -27,10 +27,10 @@ class ModelArgs(BaseModelArgs):
time_step_max: float
time_step_floor: float
rescale_prenorm_residual: bool
use_cache: bool
rms_norm: bool
chunk_size: int
tie_word_embeddings: bool
use_cache: bool = True
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
time_step_rank: Union[int, str] = "auto"
model_type: str = "mamba2"
@ -58,6 +58,29 @@ class MambaRMSNormGated(nn.Module):
return self.weight * hidden_states
def silu(x):
return x * mx.sigmoid(x)
def ssd(x, A, B, C, chunk_size):
batch, seqlen, nheads, dim = x.shape
B = mx.expand_dims(B, axis=2)
C = mx.expand_dims(C, axis=2)
state = mx.zeros((batch, nheads, dim, B.shape[-1]))
outputs = []
for i in range(0, seqlen, chunk_size):
chunk = slice(i, min(i + chunk_size, seqlen))
dA = mx.exp(mx.expand_dims(A[chunk], axis=0))
dBx = mx.einsum('blhp,bln->bhpn', x[:, chunk], B[:, chunk])
state = state * mx.expand_dims(dA, axis=-1) + dBx
y = mx.einsum('bhpn,bln->blhp', state, C[:, chunk])
outputs.append(y)
return mx.concatenate(outputs, axis=1), state
class DepthWiseConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
super().__init__()
@ -66,128 +89,143 @@ class DepthWiseConv1d(nn.Module):
self.kernel_size = kernel_size
self.padding = padding
self.groups = groups if groups is not None else in_channels
# Ensure in_channels and out_channels are the same for depthwise conv
assert in_channels == out_channels, "In and out channels must be the same for depthwise convolution"
# Ensure groups is equal to in_channels for depthwise conv
assert in_channels == out_channels, "In and out channels must be same for depthwise convolution"
assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
# Initialize weight with shape (out_channels, kernel_size, 1)
self.weight = mx.random.normal((out_channels, kernel_size, 1))
# Initialize with shape (channels, 1, kernel_size) to match pretrained weights
self.weight = mx.random.normal((in_channels, 1, kernel_size))
self.bias = mx.zeros((out_channels,)) if bias else None
def __call__(self, x, cache=None):
def __call__(self, x: mx.array, cache=None, cache_idx: int = 0) -> mx.array:
B, L, C = x.shape
_, K, _ = self.weight.shape
K = self.kernel_size
# Handle padding and caching
if cache is not None:
x = mx.concatenate([cache, x], axis=1)
conv_cache = cache[cache_idx]
if conv_cache is not None:
x = mx.concatenate([conv_cache, x], axis=1)
L = x.shape[1] # Update L after concatenation
else:
x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)])
pad_left = K - 1
x = mx.pad(x, [(0, 0), (pad_left, 0), (0, 0)])
L = x.shape[1] # Update L after padding
y = mx.conv_general(x, self.weight, groups=self.groups)
# Implement depthwise convolution manually for each channel
outputs = []
for c in range(C):
# Extract single channel and reshape for 1D convolution
x_c = x[:, :, c] # Shape: [B, L]
x_c = mx.expand_dims(x_c, axis=1) # Shape: [B, 1, L]
# Extract and ensure filter is 3D
w_c = self.weight[c] # Shape: [1, kernel_size] or [1, 1, kernel_size]
if w_c.ndim == 2:
w_c = mx.expand_dims(w_c, axis=0) # Shape: [1, 1, kernel_size]
elif w_c.ndim == 1:
w_c = mx.expand_dims(mx.expand_dims(w_c, axis=0), axis=0)
# For inference mode (single token), adjust the input
if L < K:
# Pad input to match kernel size
pad_size = K - L
x_c = mx.pad(x_c, [(0, 0), (0, 0), (pad_size, 0)])
# Apply 1D convolution for this channel
y_c = mx.conv_general(
x_c,
w_c,
stride=1,
padding=0 # We've already handled padding
)
if self.bias is not None:
y_c = y_c + self.bias[c]
outputs.append(mx.squeeze(y_c, axis=1)) # Shape: [B, 1]
# Stack all channel outputs
y = mx.stack(outputs, axis=-1) # Shape: [B, L', C]
if cache is not None:
# Update cache with the most recent K-1 tokens
cache[cache_idx] = x[:, -(K-1):, :] if L >= K else x
if self.bias is not None:
y = y + self.bias
return y, x[:, -K + 1 :, :]
return y
class Mamba2Block(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.intermediate_size = args.intermediate_size
self.time_step_rank = args.time_step_rank
self.conv_kernel_size = args.conv_kernel
self.hidden_size = args.hidden_size
self.state_size = args.state_size
self.num_heads = args.num_heads
self.head_dim = args.hidden_size // args.num_heads
self.n_groups = args.n_groups
d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias)
# projection_size = 2 * args.intermediate_size + 2 * args.n_groups * args.state_size + args.num_heads
projection_size = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
self.in_proj = nn.Linear(
args.hidden_size,
projection_size,
bias=args.use_bias
)
# self.conv_dim = args.intermediate_size + 2 * args.n_groups * args.state_size
self.conv_dim = args.intermediate_size + 2 * args.state_size
conv_dim = args.intermediate_size + 2 * args.state_size
self.conv1d = DepthWiseConv1d(
in_channels=self.conv_dim,
out_channels=self.conv_dim,
in_channels=conv_dim,
out_channels=conv_dim,
kernel_size=args.conv_kernel,
groups=conv_dim,
bias=args.use_conv_bias,
groups=self.conv_dim,
padding=args.conv_kernel - 1
)
self.A_log = mx.zeros(args.num_heads)
self.D = mx.ones((args.num_heads,))
self.dt_bias = mx.zeros(args.num_heads)
self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range
self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range
self.D = mx.random.normal((args.num_heads,)) * args.initializer_range
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
def _ssd(self, x, A, B, C, chunk_size):
batch, seq_len, nheads, head_dim = x.shape
n_state = B.shape[-1]
h = mx.zeros((batch, nheads, head_dim, n_state))
ys = []
for i in range(0, seq_len, chunk_size):
chunk_size_i = min(chunk_size, seq_len - i)
xi = x[:, i:i + chunk_size_i]
Bi = B[:, i:i + chunk_size_i]
Ci = C[:, i:i + chunk_size_i]
for t in range(chunk_size_i):
h = h * mx.exp(A)[:, None, None]
h = h + mx.expand_dims(Bi[:, t], -2) * mx.expand_dims(xi[:, t], -1)
y = mx.sum(h * mx.expand_dims(Ci[:, t], -2), axis=-1)
ys.append(y)
y = mx.stack(ys, axis=1)
return y, h
if args.rescale_prenorm_residual:
layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
self.out_proj.weight = self.out_proj.weight * layer_scale
def __call__(self, x: mx.array, cache) -> mx.array:
if cache is not None:
return self.step(x, cache)
def __call__(self, u: mx.array, cache = None):
if cache is not None and self.args.use_cache:
return self.step(u, cache)
A = -mx.exp(self.A_log)
zxbcdt = self.in_proj(u)
z, xBC, dt = mx.split(
zxbcdt,
[
self.args.d_inner,
self.args.d_inner + 2 * self.args.d_state,
self.args.nheads,
],
axis=-1,
splits = [
self.args.intermediate_size,
self.args.intermediate_size + 2 * self.args.state_size,
self.args.num_heads,
]
z, xBC, dt = mx.split(zxbcdt, splits, axis=-1)
dt = mx.clip(
nn.softplus(dt + self.dt_bias),
self.args.time_step_min,
self.args.time_step_max
)
dt = mx.softplus(dt + self.dt_bias)
# Use the custom DepthWiseConv1d with cache
xBC = self.conv1d(xBC, cache, cache_idx=0)
xBC = mx.sigmoid(xBC) * xBC # SiLU activation
x, B, C = mx.split(
dt = mx.maximum(dt, self.args.time_step_floor)
xBC = silu(self.conv1d(xBC))
xBC_parts = mx.split(
xBC,
[self.args.d_inner, self.args.d_state, self.args.d_state],
[self.args.intermediate_size, self.args.state_size, self.args.state_size],
axis=-1
)
x = xBC_parts[0]
B = xBC_parts[1]
C = xBC_parts[2]
x = self._reshape_heads(x, True)
B = mx.expand_dims(B, axis=2)
C = mx.expand_dims(C, axis=2)
# Replace rearrange with reshape and transpose
b, l, hp = x.shape
h = self.args.num_heads
p = hp // h
x = mx.reshape(x, (b, l, h, p))
y, ssm_state = self._ssd(
y, ssm_state = ssd(
x * mx.expand_dims(dt, -1),
A * dt,
B,
@ -196,61 +234,127 @@ class Mamba2Block(nn.Module):
)
y = y + x * mx.expand_dims(self.D, -1)
y = self._reshape_heads(y, False)
y = self.norm(y, z)
# Replace rearrange with reshape
y = mx.reshape(y, (b, l, h * p))
y = self.norm(y + z)
y = self.out_proj(y)
if cache is not None:
if cache is not None and self.args.use_cache:
cache[1] = ssm_state
if self.args.residual_in_fp32:
y = mx.cast(y, mx.float32)
return y
def step(self, x: mx.array, cache) -> mx.array:
"""Single inference step"""
assert x.shape[1] == 1, "Only one token can be decoded per inference step"
zxbcdt = self.in_proj(mx.squeeze(x, 1))
z, xBC, dt = mx.split(
zxbcdt,
[
self.args.d_inner,
self.args.d_inner + 2 * self.args.d_state,
self.args.nheads,
],
axis=-1,
)
def step(self, u: mx.array, cache: MambaCache):
batch_size = u.shape[0]
seq_len = u.shape[1]
outputs = []
# Use the custom DepthWiseConv1d with cache
xBC = self.conv1d(xBC, cache, cache_idx=0)
xBC = mx.sigmoid(xBC) * xBC # SiLU activation
# Initialize SSM state if needed
if cache[1] is None:
cache[1] = mx.zeros((
batch_size,
self.args.num_heads,
self.args.head_dim,
self.args.state_size
))
x, B, C = mx.split(
xBC,
[self.args.d_inner, self.args.d_state, self.args.d_state],
axis=-1
)
A = -mx.exp(self.A_log)
for pos in range(seq_len):
# Get single token
u_t = u[:, pos:pos+1, :]
dt = mx.softplus(dt + self.dt_bias)
dA = mx.exp(dt * A)
x = mx.reshape(x, (-1, self.args.nheads, self.args.headdim))
ssm_state = cache[1]
dBx = mx.expand_dims(dt, -1) * mx.expand_dims(B, 1) * mx.expand_dims(x, -1)
ssm_state = ssm_state * mx.expand_dims(mx.expand_dims(dA, -1), -1) + dBx
y = mx.sum(ssm_state * mx.expand_dims(mx.expand_dims(C, 1), 1), axis=-1)
y = y + mx.expand_dims(self.D, -1) * x
y = mx.reshape(y, (-1, self.args.nheads * self.args.headdim))
y = self.norm(y, z)
y = self.out_proj(y)
# Project input
zxbcdt = self.in_proj(u_t)
# Calculate sizes
d_model = self.args.intermediate_size
d_state = self.args.state_size
n_heads = self.args.num_heads
d_head = self.args.head_dim
# Correct splits for z, xBC, dt
splits = [
d_model, # z size
d_model + 2 * d_state, # xBC size (delta, B, C)
n_heads # dt size
]
# Split the projected input
z = zxbcdt[:, :, :splits[0]]
xBC = zxbcdt[:, :, splits[0]:splits[0] + splits[1]]
dt = zxbcdt[:, :, -splits[2]:] # Take last n_heads elements
# Update SSM state in cache
cache[1] = ssm_state
# Process dt
dt = mx.reshape(dt, (batch_size, n_heads))
dt = mx.clip(
nn.softplus(dt + self.dt_bias),
self.args.time_step_min,
self.args.time_step_max
)
dt = mx.maximum(dt, self.args.time_step_floor)
return mx.expand_dims(y, 1)
# Process convolution
xBC = self.conv1d(xBC, cache=cache, cache_idx=0)
xBC = silu(xBC)
# Split convolved xBC into x, B, C
x = xBC[:, :, :d_model]
B = xBC[:, :, d_model:d_model + d_state]
C = xBC[:, :, -d_state:]
# Reshape x into (batch, heads, dim)
x = mx.reshape(x, (batch_size, 1, n_heads, d_head))
x = mx.squeeze(x, axis=1) # (batch, heads, dim)
# Reshape B into (batch, heads, dim, state)
B = mx.reshape(B, (batch_size, 1, d_state))
B = mx.broadcast_to(B, (batch_size, n_heads, d_state))
B = mx.expand_dims(B, axis=2) # (batch, heads, 1, state)
# Reshape C for later use
C = mx.reshape(C, (batch_size, 1, d_state))
C = mx.broadcast_to(C, (batch_size, n_heads, d_state))
C = mx.expand_dims(C, axis=3) # (batch, heads, state, 1)
# Compute SSM updates
A = -mx.exp(self.A_log)
dA = mx.exp(dt * mx.expand_dims(A, 0))
dA = mx.expand_dims(mx.expand_dims(dA, -1), -1) # (batch, heads, 1, 1)
# Prepare x for Bx computation
x = mx.expand_dims(x, axis=3) # (batch, heads, dim, 1)
# Compute dBx with proper broadcasting
dBx = mx.matmul(x, B) # (batch, heads, dim, state)
# Update state
ssm_state = cache[1] # (batch, heads, dim, state)
ssm_state = ssm_state * dA + dBx
cache[1] = ssm_state
# Compute output
y = mx.matmul(ssm_state, C) # (batch, heads, dim, 1)
y = mx.squeeze(y, axis=-1) # (batch, heads, dim)
# Add skip connection with D
y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
# Reshape to original dimensions
y = mx.reshape(y, (batch_size, 1, n_heads * d_head))
# Apply norm and output projection
y = self.norm(y + z)
y = self.out_proj(y)
if self.args.residual_in_fp32:
y.astype(mx.float32)
outputs.append(y)
return mx.concatenate(outputs, axis=1)
class ResidualBlock(nn.Module):
@ -287,7 +391,6 @@ class Model(nn.Module):
self.model_type = args.model_type
self.backbone = Mamba2(args)
# self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
@ -302,16 +405,25 @@ class Model(nn.Module):
else:
logits = self.lm_head(x)
print('ouput')
return logits
def sanitize(self, weights):
for k, v in weights.items():
if "conv1d.weight" in k and v.ndim == 3:
weights[k] = v.moveaxis(2, 1)
return weights
def make_cache(self):
return [MambaCache() for _ in range(len(self.layers))]
def sanitize(self, weights):
sanitized = {}
for k, v in weights.items():
if "conv1d.weight" in k:
# Ensure weights are in correct shape (channels, 1, kernel_size)
if v.ndim == 2:
v = mx.expand_dims(v, axis=1)
elif v.ndim == 1:
v = mx.expand_dims(mx.expand_dims(v, axis=0), axis=0)
sanitized[k] = v
else:
sanitized[k] = v
return sanitized
@property
def layers(self):

View File

@ -146,6 +146,8 @@ def linear_to_lora_layers(
elif model.model_type == "mamba2":
keys = set(
[
"mixer.in_proj",
"mixer.out_proj",
]
)
else: