From 758f05c09ae6ede20ba107eb20da6ab0b20f7216 Mon Sep 17 00:00:00 2001
From: Anchen
Date: Sat, 6 Jan 2024 07:53:46 -0800
Subject: [PATCH] refactor: merge deepseek coder example into hf_llm example
(#234)
* refactor: merge deepseek coder example into hf_llm example
* remove deepseek example
* chore: fix format in readme
* chore: remove default rope_scaling dict and use get to access type and factor to avoid key error
* Update llms/hf_llm/models.py
Co-authored-by: Awni Hannun
* chore: fix lint
---------
Co-authored-by: Awni Hannun
---
llms/deepseek-coder/README.md | 49 ----
llms/deepseek-coder/convert.py | 159 -------------
llms/deepseek-coder/deepseek_coder.py | 313 --------------------------
llms/deepseek-coder/requirements.txt | 4 -
llms/hf_llm/README.md | 2 +
llms/hf_llm/models.py | 21 +-
llms/hf_llm/requirements.txt | 1 +
7 files changed, 22 insertions(+), 527 deletions(-)
delete mode 100644 llms/deepseek-coder/README.md
delete mode 100644 llms/deepseek-coder/convert.py
delete mode 100644 llms/deepseek-coder/deepseek_coder.py
delete mode 100644 llms/deepseek-coder/requirements.txt
diff --git a/llms/deepseek-coder/README.md b/llms/deepseek-coder/README.md
deleted file mode 100644
index 086b1960..00000000
--- a/llms/deepseek-coder/README.md
+++ /dev/null
@@ -1,49 +0,0 @@
-# Deepseek Coder
-
-Deepseek Coder is a family of code generating language models based on the
-Llama architecture.[^1] The models were trained from scratch on a corpus of 2T
-tokens, with a composition of 87% code and 13% natural language containing both
-English and Chinese.
-
-### Setup
-
-Install the dependencies:
-
-```
-pip install -r requirements.txt
-```
-
-Next, download and convert the model.
-
-```sh
-python convert.py --hf-path
-```
-
-To generate a 4-bit quantized model, use `-q`. For a full list of options run:
-
-```
-python convert.py --help
-```
-
-The converter downloads the model from Hugging Face. The default model is
-`deepseek-ai/deepseek-coder-6.7b-instruct`. Check out the [Hugging Face
-page](https://huggingface.co/deepseek-ai) to see a list of available models.
-
-By default, the conversion script will save the converted `weights.npz`,
-tokenizer, and `config.json` in the `mlx_model` directory.
-
-> [!TIP] Alternatively, you can also download a few converted checkpoints from
-> the [MLX Community](https://huggingface.co/mlx-community) organization on
-> Hugging Face and skip the conversion step.
-
-### Run
-
-Once you've converted the weights, you can interact with the Deepseek coder
-model:
-
-```
-python deepseek_coder.py --prompt "write a quick sort algorithm in python."
-```
-
-[^1]: For more information [blog post](https://deepseekcoder.github.io/) by
- DeepSeek AI
diff --git a/llms/deepseek-coder/convert.py b/llms/deepseek-coder/convert.py
deleted file mode 100644
index d3e18ec7..00000000
--- a/llms/deepseek-coder/convert.py
+++ /dev/null
@@ -1,159 +0,0 @@
-import argparse
-import copy
-import json
-from pathlib import Path
-
-import mlx.core as mx
-import mlx.nn as nn
-import numpy as np
-import torch
-from deepseek_coder import DeepseekCoder, ModelArgs
-from mlx.utils import tree_flatten, tree_map, tree_unflatten
-from transformers import AutoModelForCausalLM, AutoTokenizer
-
-
-def quantize(weights, config, args):
- quantized_config = copy.deepcopy(config)
-
- # Load the model:
- model_args = ModelArgs(**config)
- model = DeepseekCoder(model_args)
-
- weights = tree_map(mx.array, weights)
- model.update(tree_unflatten(list(weights.items())))
-
- # Quantize the model:
- nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
-
- # Update the config:
- quantized_config["quantization"] = {
- "group_size": args.q_group_size,
- "bits": args.q_bits,
- }
- quantized_weights = dict(tree_flatten(model.parameters()))
-
- return quantized_weights, quantized_config
-
-
-def convert(args):
- hf_path = Path(args.hf_path)
-
- model = AutoModelForCausalLM.from_pretrained(
- str(hf_path), trust_remote_code=True, torch_dtype=torch.float16
- )
- config = model.config.to_dict()
-
- state_dict = model.state_dict()
- tokenizer = AutoTokenizer.from_pretrained(
- str(hf_path), trust_remote_code=True, use_fast=False
- )
-
- # things to change
- # 1. there's no "model." in the weight names
- state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
-
- # 2. mlp is called feed_forward
- state_dict = {k.replace("mlp", "feed_forward"): v for k, v in state_dict.items()}
-
- # 3. up_proj, down_proj, gate_proj
- state_dict = {k.replace("down_proj", "w2"): v for k, v in state_dict.items()}
- state_dict = {k.replace("up_proj", "w3"): v for k, v in state_dict.items()}
- state_dict = {k.replace("gate_proj", "w1"): v for k, v in state_dict.items()}
-
- # 4. layernorms
- state_dict = {
- k.replace("input_layernorm", "attention_norm"): v for k, v in state_dict.items()
- }
- state_dict = {
- k.replace("post_attention_layernorm", "ffn_norm"): v
- for k, v in state_dict.items()
- }
-
- # 5. lm head
- state_dict = {k.replace("lm_head", "output"): v for k, v in state_dict.items()}
-
- # 6. token emb
- state_dict = {
- k.replace("embed_tokens", "tok_embeddings"): v for k, v in state_dict.items()
- }
-
- # 7. attention
- state_dict = {k.replace("self_attn", "attention"): v for k, v in state_dict.items()}
- state_dict = {k.replace("q_proj", "wq"): v for k, v in state_dict.items()}
- state_dict = {k.replace("k_proj", "wk"): v for k, v in state_dict.items()}
- state_dict = {k.replace("v_proj", "wv"): v for k, v in state_dict.items()}
- state_dict = {k.replace("o_proj", "wo"): v for k, v in state_dict.items()}
-
- weights = {k: v.numpy() for k, v in state_dict.items()}
-
- config["rope_scaling_factor"] = (
- config["rope_scaling"]["factor"] if config["rope_scaling"] is not None else 1.0
- )
- keep_keys = set(
- [
- "vocab_size",
- "hidden_size",
- "num_attention_heads",
- "num_key_value_heads",
- "num_hidden_layers",
- "max_position_embeddings",
- "rms_norm_eps",
- "intermediate_size",
- "rope_scaling_factor",
- "rope_theta",
- ]
- )
- for k in list(config.keys()):
- if k not in keep_keys:
- config.pop(k)
-
- return weights, config, tokenizer
-
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser(description="Convert Deepseek coder model to npz")
- parser.add_argument(
- "--hf-path",
- help="The huggingface model to be converted",
- default="deepseek-ai/deepseek-coder-6.7b-instruct",
- )
- parser.add_argument(
- "--mlx-path",
- type=str,
- default="mlx_model",
- help="The path to save the MLX model.",
- )
- parser.add_argument(
- "-q",
- "--quantize",
- help="Generate a quantized model.",
- action="store_true",
- )
- parser.add_argument(
- "--q-group-size",
- help="Group size for quantization.",
- type=int,
- default=64,
- )
- parser.add_argument(
- "--q-bits",
- help="Bits per weight for quantization.",
- type=int,
- default=4,
- )
- args = parser.parse_args()
-
- mlx_path = Path(args.mlx_path)
- mlx_path.mkdir(parents=True, exist_ok=True)
-
- weights, config, tokenizer = convert(args)
-
- if args.quantize:
- print("[INFO] Quantizing")
- weights, config = quantize(weights, config, args)
-
- np.savez(str(mlx_path / "weights.npz"), **weights)
- tokenizer.save_pretrained(mlx_path)
- with open(mlx_path / "config.json", "w") as f:
- config["model_type"] = "deepseek_coder"
- json.dump(config, f, indent=4)
diff --git a/llms/deepseek-coder/deepseek_coder.py b/llms/deepseek-coder/deepseek_coder.py
deleted file mode 100644
index 6c878b55..00000000
--- a/llms/deepseek-coder/deepseek_coder.py
+++ /dev/null
@@ -1,313 +0,0 @@
-import argparse
-import json
-import math
-from dataclasses import dataclass
-from pathlib import Path
-from typing import Optional, Tuple
-
-import mlx.core as mx
-import mlx.nn as nn
-from mlx.utils import tree_unflatten
-from transformers import AutoTokenizer
-
-
-@dataclass
-class ModelArgs:
- hidden_size: int = 4096
- num_attention_heads: int = 32
- num_hidden_layers: int = 32
- num_key_value_heads: int = 32
- max_position_embeddings: int = 16384
- rms_norm_eps: float = 1e-6
- intermediate_size: int = 11008
- rope_theta: float = 100000
- rope_scaling_factor: float = 4.0
- vocab_size: int = 32256
-
-
-class RMSNorm(nn.Module):
- def __init__(self, dims: int, eps: float = 1e-5):
- super().__init__()
- self.weight = mx.ones((dims,))
- self.eps = eps
-
- def _norm(self, x):
- return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
-
- def __call__(self, x):
- output = self._norm(x.astype(mx.float32)).astype(x.dtype)
- return self.weight * output
-
-
-class LinearScalingRoPE(nn.RoPE):
- def __init__(
- self, dims: int, rope_scaling_factor: float = 4.0, base: float = 10000
- ):
- super().__init__(dims)
- self.base = base
- self.rope_scaling_factor = rope_scaling_factor
-
- def __call__(self, x, offset: int = 0):
- shape = x.shape
- x = mx.reshape(x, (-1, shape[-2], shape[-1]))
- N = x.shape[1] + offset
- costheta, sintheta = LinearScalingRoPE.create_cos_sin_theta(
- N,
- self.dims,
- offset=offset,
- base=self.base,
- rope_scaling_factor=self.rope_scaling_factor,
- dtype=x.dtype,
- )
-
- rx = self._compute_rope(costheta, sintheta, x)
-
- return mx.reshape(rx, shape)
-
- @staticmethod
- def create_cos_sin_theta(
- N: int,
- D: int,
- offset: int = 0,
- base: float = 10000,
- rope_scaling_factor: float = 1.0,
- dtype=mx.float32,
- ):
- D = D // 2
- positions = mx.arange(offset, N, dtype=dtype)
- positions = positions / rope_scaling_factor
- freqs = mx.exp(-mx.arange(0.0, D, dtype=dtype) * (math.log(base) / D))
- theta = mx.reshape(positions, (-1, 1)) * mx.reshape(freqs, (1, -1))
- return mx.cos(theta), mx.sin(theta)
-
-
-class Attention(nn.Module):
- def __init__(self, args: ModelArgs):
- super().__init__()
- self.num_attention_heads: int = args.num_attention_heads
- self.num_key_value_heads: int = args.num_key_value_heads
- self.repeats = self.num_attention_heads // self.num_key_value_heads
-
- self.head_dim = args.hidden_size // args.num_attention_heads
-
- self.scale = self.head_dim**-0.5
-
- self.wq = nn.Linear(
- args.hidden_size, args.num_attention_heads * self.head_dim, bias=False
- )
- self.wk = nn.Linear(
- args.hidden_size, args.num_key_value_heads * self.head_dim, bias=False
- )
- self.wv = nn.Linear(
- args.hidden_size, args.num_key_value_heads * self.head_dim, bias=False
- )
- self.wo = nn.Linear(
- args.num_attention_heads * self.head_dim, args.hidden_size, bias=False
- )
- self.rope = LinearScalingRoPE(
- self.head_dim,
- rope_scaling_factor=args.rope_scaling_factor,
- base=args.rope_theta,
- )
-
- def __call__(
- self,
- x: mx.array,
- mask: Optional[mx.array] = None,
- cache: Optional[Tuple[mx.array, mx.array]] = None,
- ) -> mx.array:
- B, L, D = x.shape
-
- queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
-
- # Prepare the queries, keys and values for the attention computation
- queries = queries.reshape(B, L, self.num_attention_heads, -1).transpose(
- 0, 2, 1, 3
- )
- keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3)
- values = values.reshape(B, L, self.num_key_value_heads, -1).transpose(
- 0, 2, 1, 3
- )
-
- def repeat(a):
- a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
- return a.reshape([B, self.num_attention_heads, L, -1])
-
- keys, values = map(repeat, (keys, values))
-
- if cache is not None:
- key_cache, value_cache = cache
- queries = self.rope(queries, offset=key_cache.shape[2])
- keys = self.rope(keys, offset=key_cache.shape[2])
- keys = mx.concatenate([key_cache, keys], axis=2)
- values = mx.concatenate([value_cache, values], axis=2)
- else:
- queries = self.rope(queries)
- keys = self.rope(keys)
-
- scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
- if mask is not None:
- scores += mask
- scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
- output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
- return self.wo(output), (keys, values)
-
-
-class FeedForward(nn.Module):
- def __init__(self, args: ModelArgs):
- super().__init__()
- self.w1 = nn.Linear(args.hidden_size, args.intermediate_size, bias=False)
- self.w2 = nn.Linear(args.intermediate_size, args.hidden_size, bias=False)
- self.w3 = nn.Linear(args.hidden_size, args.intermediate_size, bias=False)
-
- def __call__(self, x) -> mx.array:
- return self.w2(nn.silu(self.w1(x)) * self.w3(x))
-
-
-class TransformerBlock(nn.Module):
- def __init__(self, args: ModelArgs):
- super().__init__()
- self.attention = Attention(args)
- self.feed_forward = FeedForward(args=args)
- self.attention_norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
- self.ffn_norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
-
- def __call__(
- self,
- x: mx.array,
- mask: Optional[mx.array] = None,
- cache: Optional[Tuple[mx.array, mx.array]] = None,
- ) -> mx.array:
- r, cache = self.attention(self.attention_norm(x), mask, cache)
- h = x + r
- r = self.feed_forward(self.ffn_norm(h))
- out = h + r
- return out, cache
-
-
-class DeepseekCoder(nn.Module):
- def __init__(self, args: ModelArgs):
- super().__init__()
- self.args = args
- self.vocab_size = args.vocab_size
- self.tok_embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
- self.layers = [
- TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
- ]
- self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
- self.output = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
-
- def __call__(self, x, mask=None, cache=None):
- x = self.tok_embeddings(x)
- mask = None
- T = x.shape[1]
- if T > 1:
- mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
- mask = mask.astype(x.dtype)
-
- if cache is None:
- cache = [None] * len(self.layers)
-
- for e, layer in enumerate(self.layers):
- x, cache[e] = layer(x, mask, cache[e])
- x = self.norm(x)
- return self.output(x), cache
-
-
-def generate(
- prompt: mx.array,
- model: DeepseekCoder,
- temp: float = 0.0,
-):
- def sample(logits):
- if temp == 0:
- return mx.argmax(logits, axis=-1)
- else:
- return mx.random.categorical(logits * (1 / temp))
-
- y = prompt
- cache = None
- while True:
- logits, cache = model(y[None], cache=cache)
- logits = logits[:, -1, :]
- y = sample(logits)
- yield y
-
-
-def load_model(model_path: str):
- model_path = Path(model_path)
- with open(model_path / "config.json", "r") as f:
- config = json.load(f)
- config.pop("model_type")
- quantization = config.pop("quantization", None)
- model_args = ModelArgs(**config)
-
- model = DeepseekCoder(model_args)
- weights = mx.load(str(model_path / "weights.npz"))
- if quantization is not None:
- nn.QuantizedLinear.quantize_module(model, **quantization)
- model.update(tree_unflatten(list(weights.items())))
-
- tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
- return model, tokenizer
-
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser(description="Deepseek coder inference script")
- parser.add_argument(
- "--model-path",
- type=str,
- default="mlx_model",
- help="The path to the mlx model weights, tokenizer, and config",
- )
- parser.add_argument(
- "--prompt",
- help="The message to be processed by the model",
- default="### Instruction: \nwrite a quick sort algorithm in python.\n### Response: \n",
- )
- parser.add_argument(
- "--max-tokens",
- "-m",
- type=int,
- default=100,
- help="Maximum number of tokens to generate",
- )
- parser.add_argument(
- "--temp",
- help="The sampling temperature.",
- type=float,
- default=0.6,
- )
- parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
- args = parser.parse_args()
-
- mx.random.seed(args.seed)
-
- model, tokenizer = load_model(args.model_path)
-
- prompt = tokenizer(
- args.prompt,
- return_tensors="np",
- return_attention_mask=False,
- )[
- "input_ids"
- ][0]
-
- prompt = mx.array(prompt)
-
- print(args.prompt, end="", flush=True)
-
- tokens = []
- skip = 0
- for token, _ in zip(
- generate(prompt, model, args.temp),
- range(args.max_tokens),
- ):
- if token == tokenizer.eos_token_id:
- break
- tokens.append(token.item())
- s = tokenizer.decode(tokens)
- print(s[skip:], end="", flush=True)
- skip = len(s)
-
- print(tokenizer.decode(tokens)[skip:], flush=True)
diff --git a/llms/deepseek-coder/requirements.txt b/llms/deepseek-coder/requirements.txt
deleted file mode 100644
index 3417c23b..00000000
--- a/llms/deepseek-coder/requirements.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-torch
-mlx
-numpy
-transformers>=4.35
\ No newline at end of file
diff --git a/llms/hf_llm/README.md b/llms/hf_llm/README.md
index dd2715bb..06a946c3 100644
--- a/llms/hf_llm/README.md
+++ b/llms/hf_llm/README.md
@@ -45,6 +45,8 @@ Here are a few examples of Hugging Face models which work with this example:
- [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
- [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T)
+- [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
+- [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
Most
[Mistral](https://huggingface.co/models?library=transformers,safetensors&other=mistral&sort=trending)
diff --git a/llms/hf_llm/models.py b/llms/hf_llm/models.py
index c19fb397..a706e4ea 100644
--- a/llms/hf_llm/models.py
+++ b/llms/hf_llm/models.py
@@ -5,7 +5,7 @@ import inspect
import json
from dataclasses import dataclass
from pathlib import Path
-from typing import Optional, Tuple
+from typing import Dict, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
@@ -26,11 +26,20 @@ class ModelArgs:
rope_theta: float = 10000
rope_traditional: bool = False
model_type: str = None
+ rope_scaling: Optional[Dict[str, Union[float, str]]] = None
def __post_init__(self):
if self.num_key_value_heads is None:
self.num_key_value_heads = self.num_attention_heads
+ if self.rope_scaling:
+ required_keys = {"factor", "type"}
+ if not all(key in self.rope_scaling for key in required_keys):
+ raise ValueError(f"rope_scaling must contain keys {required_keys}")
+
+ if self.rope_scaling["type"] != "linear":
+ raise ValueError("rope_scaling 'type' currently only supports 'linear'")
+
@classmethod
def from_dict(cls, params):
return cls(
@@ -73,8 +82,16 @@ class Attention(nn.Module):
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
+ rope_scale = (
+ 1 / args.rope_scaling["factor"]
+ if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
+ else 1
+ )
self.rope = nn.RoPE(
- head_dim, traditional=args.rope_traditional, base=args.rope_theta
+ head_dim,
+ traditional=args.rope_traditional,
+ base=args.rope_theta,
+ scale=rope_scale,
)
def __call__(
diff --git a/llms/hf_llm/requirements.txt b/llms/hf_llm/requirements.txt
index ccb54860..4447dc86 100644
--- a/llms/hf_llm/requirements.txt
+++ b/llms/hf_llm/requirements.txt
@@ -1,3 +1,4 @@
mlx>=0.0.7
numpy
transformers
+protobuf
\ No newline at end of file