mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-07-19 09:31:13 +08:00
refactor: merge deepseek coder example into hf_llm example (#234)
* refactor: merge deepseek coder example into hf_llm example * remove deepseek example * chore: fix format in readme * chore: remove default rope_scaling dict and use get to access type and factor to avoid key error * Update llms/hf_llm/models.py Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * chore: fix lint --------- Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
This commit is contained in:
parent
cf0ad26a89
commit
758f05c09a
@ -1,49 +0,0 @@
|
|||||||
# Deepseek Coder
|
|
||||||
|
|
||||||
Deepseek Coder is a family of code generating language models based on the
|
|
||||||
Llama architecture.[^1] The models were trained from scratch on a corpus of 2T
|
|
||||||
tokens, with a composition of 87% code and 13% natural language containing both
|
|
||||||
English and Chinese.
|
|
||||||
|
|
||||||
### Setup
|
|
||||||
|
|
||||||
Install the dependencies:
|
|
||||||
|
|
||||||
```
|
|
||||||
pip install -r requirements.txt
|
|
||||||
```
|
|
||||||
|
|
||||||
Next, download and convert the model.
|
|
||||||
|
|
||||||
```sh
|
|
||||||
python convert.py --hf-path <path_to_huggingface_model>
|
|
||||||
```
|
|
||||||
|
|
||||||
To generate a 4-bit quantized model, use `-q`. For a full list of options run:
|
|
||||||
|
|
||||||
```
|
|
||||||
python convert.py --help
|
|
||||||
```
|
|
||||||
|
|
||||||
The converter downloads the model from Hugging Face. The default model is
|
|
||||||
`deepseek-ai/deepseek-coder-6.7b-instruct`. Check out the [Hugging Face
|
|
||||||
page](https://huggingface.co/deepseek-ai) to see a list of available models.
|
|
||||||
|
|
||||||
By default, the conversion script will save the converted `weights.npz`,
|
|
||||||
tokenizer, and `config.json` in the `mlx_model` directory.
|
|
||||||
|
|
||||||
> [!TIP] Alternatively, you can also download a few converted checkpoints from
|
|
||||||
> the [MLX Community](https://huggingface.co/mlx-community) organization on
|
|
||||||
> Hugging Face and skip the conversion step.
|
|
||||||
|
|
||||||
### Run
|
|
||||||
|
|
||||||
Once you've converted the weights, you can interact with the Deepseek coder
|
|
||||||
model:
|
|
||||||
|
|
||||||
```
|
|
||||||
python deepseek_coder.py --prompt "write a quick sort algorithm in python."
|
|
||||||
```
|
|
||||||
|
|
||||||
[^1]: For more information [blog post](https://deepseekcoder.github.io/) by
|
|
||||||
DeepSeek AI
|
|
@ -1,159 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import copy
|
|
||||||
import json
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import mlx.core as mx
|
|
||||||
import mlx.nn as nn
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
from deepseek_coder import DeepseekCoder, ModelArgs
|
|
||||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
|
||||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
||||||
|
|
||||||
|
|
||||||
def quantize(weights, config, args):
|
|
||||||
quantized_config = copy.deepcopy(config)
|
|
||||||
|
|
||||||
# Load the model:
|
|
||||||
model_args = ModelArgs(**config)
|
|
||||||
model = DeepseekCoder(model_args)
|
|
||||||
|
|
||||||
weights = tree_map(mx.array, weights)
|
|
||||||
model.update(tree_unflatten(list(weights.items())))
|
|
||||||
|
|
||||||
# Quantize the model:
|
|
||||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
|
||||||
|
|
||||||
# Update the config:
|
|
||||||
quantized_config["quantization"] = {
|
|
||||||
"group_size": args.q_group_size,
|
|
||||||
"bits": args.q_bits,
|
|
||||||
}
|
|
||||||
quantized_weights = dict(tree_flatten(model.parameters()))
|
|
||||||
|
|
||||||
return quantized_weights, quantized_config
|
|
||||||
|
|
||||||
|
|
||||||
def convert(args):
|
|
||||||
hf_path = Path(args.hf_path)
|
|
||||||
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
|
||||||
str(hf_path), trust_remote_code=True, torch_dtype=torch.float16
|
|
||||||
)
|
|
||||||
config = model.config.to_dict()
|
|
||||||
|
|
||||||
state_dict = model.state_dict()
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(
|
|
||||||
str(hf_path), trust_remote_code=True, use_fast=False
|
|
||||||
)
|
|
||||||
|
|
||||||
# things to change
|
|
||||||
# 1. there's no "model." in the weight names
|
|
||||||
state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
|
|
||||||
|
|
||||||
# 2. mlp is called feed_forward
|
|
||||||
state_dict = {k.replace("mlp", "feed_forward"): v for k, v in state_dict.items()}
|
|
||||||
|
|
||||||
# 3. up_proj, down_proj, gate_proj
|
|
||||||
state_dict = {k.replace("down_proj", "w2"): v for k, v in state_dict.items()}
|
|
||||||
state_dict = {k.replace("up_proj", "w3"): v for k, v in state_dict.items()}
|
|
||||||
state_dict = {k.replace("gate_proj", "w1"): v for k, v in state_dict.items()}
|
|
||||||
|
|
||||||
# 4. layernorms
|
|
||||||
state_dict = {
|
|
||||||
k.replace("input_layernorm", "attention_norm"): v for k, v in state_dict.items()
|
|
||||||
}
|
|
||||||
state_dict = {
|
|
||||||
k.replace("post_attention_layernorm", "ffn_norm"): v
|
|
||||||
for k, v in state_dict.items()
|
|
||||||
}
|
|
||||||
|
|
||||||
# 5. lm head
|
|
||||||
state_dict = {k.replace("lm_head", "output"): v for k, v in state_dict.items()}
|
|
||||||
|
|
||||||
# 6. token emb
|
|
||||||
state_dict = {
|
|
||||||
k.replace("embed_tokens", "tok_embeddings"): v for k, v in state_dict.items()
|
|
||||||
}
|
|
||||||
|
|
||||||
# 7. attention
|
|
||||||
state_dict = {k.replace("self_attn", "attention"): v for k, v in state_dict.items()}
|
|
||||||
state_dict = {k.replace("q_proj", "wq"): v for k, v in state_dict.items()}
|
|
||||||
state_dict = {k.replace("k_proj", "wk"): v for k, v in state_dict.items()}
|
|
||||||
state_dict = {k.replace("v_proj", "wv"): v for k, v in state_dict.items()}
|
|
||||||
state_dict = {k.replace("o_proj", "wo"): v for k, v in state_dict.items()}
|
|
||||||
|
|
||||||
weights = {k: v.numpy() for k, v in state_dict.items()}
|
|
||||||
|
|
||||||
config["rope_scaling_factor"] = (
|
|
||||||
config["rope_scaling"]["factor"] if config["rope_scaling"] is not None else 1.0
|
|
||||||
)
|
|
||||||
keep_keys = set(
|
|
||||||
[
|
|
||||||
"vocab_size",
|
|
||||||
"hidden_size",
|
|
||||||
"num_attention_heads",
|
|
||||||
"num_key_value_heads",
|
|
||||||
"num_hidden_layers",
|
|
||||||
"max_position_embeddings",
|
|
||||||
"rms_norm_eps",
|
|
||||||
"intermediate_size",
|
|
||||||
"rope_scaling_factor",
|
|
||||||
"rope_theta",
|
|
||||||
]
|
|
||||||
)
|
|
||||||
for k in list(config.keys()):
|
|
||||||
if k not in keep_keys:
|
|
||||||
config.pop(k)
|
|
||||||
|
|
||||||
return weights, config, tokenizer
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser(description="Convert Deepseek coder model to npz")
|
|
||||||
parser.add_argument(
|
|
||||||
"--hf-path",
|
|
||||||
help="The huggingface model to be converted",
|
|
||||||
default="deepseek-ai/deepseek-coder-6.7b-instruct",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--mlx-path",
|
|
||||||
type=str,
|
|
||||||
default="mlx_model",
|
|
||||||
help="The path to save the MLX model.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"-q",
|
|
||||||
"--quantize",
|
|
||||||
help="Generate a quantized model.",
|
|
||||||
action="store_true",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--q-group-size",
|
|
||||||
help="Group size for quantization.",
|
|
||||||
type=int,
|
|
||||||
default=64,
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--q-bits",
|
|
||||||
help="Bits per weight for quantization.",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
)
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
mlx_path = Path(args.mlx_path)
|
|
||||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
|
||||||
|
|
||||||
weights, config, tokenizer = convert(args)
|
|
||||||
|
|
||||||
if args.quantize:
|
|
||||||
print("[INFO] Quantizing")
|
|
||||||
weights, config = quantize(weights, config, args)
|
|
||||||
|
|
||||||
np.savez(str(mlx_path / "weights.npz"), **weights)
|
|
||||||
tokenizer.save_pretrained(mlx_path)
|
|
||||||
with open(mlx_path / "config.json", "w") as f:
|
|
||||||
config["model_type"] = "deepseek_coder"
|
|
||||||
json.dump(config, f, indent=4)
|
|
@ -1,313 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import json
|
|
||||||
import math
|
|
||||||
from dataclasses import dataclass
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Optional, Tuple
|
|
||||||
|
|
||||||
import mlx.core as mx
|
|
||||||
import mlx.nn as nn
|
|
||||||
from mlx.utils import tree_unflatten
|
|
||||||
from transformers import AutoTokenizer
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class ModelArgs:
|
|
||||||
hidden_size: int = 4096
|
|
||||||
num_attention_heads: int = 32
|
|
||||||
num_hidden_layers: int = 32
|
|
||||||
num_key_value_heads: int = 32
|
|
||||||
max_position_embeddings: int = 16384
|
|
||||||
rms_norm_eps: float = 1e-6
|
|
||||||
intermediate_size: int = 11008
|
|
||||||
rope_theta: float = 100000
|
|
||||||
rope_scaling_factor: float = 4.0
|
|
||||||
vocab_size: int = 32256
|
|
||||||
|
|
||||||
|
|
||||||
class RMSNorm(nn.Module):
|
|
||||||
def __init__(self, dims: int, eps: float = 1e-5):
|
|
||||||
super().__init__()
|
|
||||||
self.weight = mx.ones((dims,))
|
|
||||||
self.eps = eps
|
|
||||||
|
|
||||||
def _norm(self, x):
|
|
||||||
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
|
||||||
|
|
||||||
def __call__(self, x):
|
|
||||||
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
|
||||||
return self.weight * output
|
|
||||||
|
|
||||||
|
|
||||||
class LinearScalingRoPE(nn.RoPE):
|
|
||||||
def __init__(
|
|
||||||
self, dims: int, rope_scaling_factor: float = 4.0, base: float = 10000
|
|
||||||
):
|
|
||||||
super().__init__(dims)
|
|
||||||
self.base = base
|
|
||||||
self.rope_scaling_factor = rope_scaling_factor
|
|
||||||
|
|
||||||
def __call__(self, x, offset: int = 0):
|
|
||||||
shape = x.shape
|
|
||||||
x = mx.reshape(x, (-1, shape[-2], shape[-1]))
|
|
||||||
N = x.shape[1] + offset
|
|
||||||
costheta, sintheta = LinearScalingRoPE.create_cos_sin_theta(
|
|
||||||
N,
|
|
||||||
self.dims,
|
|
||||||
offset=offset,
|
|
||||||
base=self.base,
|
|
||||||
rope_scaling_factor=self.rope_scaling_factor,
|
|
||||||
dtype=x.dtype,
|
|
||||||
)
|
|
||||||
|
|
||||||
rx = self._compute_rope(costheta, sintheta, x)
|
|
||||||
|
|
||||||
return mx.reshape(rx, shape)
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def create_cos_sin_theta(
|
|
||||||
N: int,
|
|
||||||
D: int,
|
|
||||||
offset: int = 0,
|
|
||||||
base: float = 10000,
|
|
||||||
rope_scaling_factor: float = 1.0,
|
|
||||||
dtype=mx.float32,
|
|
||||||
):
|
|
||||||
D = D // 2
|
|
||||||
positions = mx.arange(offset, N, dtype=dtype)
|
|
||||||
positions = positions / rope_scaling_factor
|
|
||||||
freqs = mx.exp(-mx.arange(0.0, D, dtype=dtype) * (math.log(base) / D))
|
|
||||||
theta = mx.reshape(positions, (-1, 1)) * mx.reshape(freqs, (1, -1))
|
|
||||||
return mx.cos(theta), mx.sin(theta)
|
|
||||||
|
|
||||||
|
|
||||||
class Attention(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.num_attention_heads: int = args.num_attention_heads
|
|
||||||
self.num_key_value_heads: int = args.num_key_value_heads
|
|
||||||
self.repeats = self.num_attention_heads // self.num_key_value_heads
|
|
||||||
|
|
||||||
self.head_dim = args.hidden_size // args.num_attention_heads
|
|
||||||
|
|
||||||
self.scale = self.head_dim**-0.5
|
|
||||||
|
|
||||||
self.wq = nn.Linear(
|
|
||||||
args.hidden_size, args.num_attention_heads * self.head_dim, bias=False
|
|
||||||
)
|
|
||||||
self.wk = nn.Linear(
|
|
||||||
args.hidden_size, args.num_key_value_heads * self.head_dim, bias=False
|
|
||||||
)
|
|
||||||
self.wv = nn.Linear(
|
|
||||||
args.hidden_size, args.num_key_value_heads * self.head_dim, bias=False
|
|
||||||
)
|
|
||||||
self.wo = nn.Linear(
|
|
||||||
args.num_attention_heads * self.head_dim, args.hidden_size, bias=False
|
|
||||||
)
|
|
||||||
self.rope = LinearScalingRoPE(
|
|
||||||
self.head_dim,
|
|
||||||
rope_scaling_factor=args.rope_scaling_factor,
|
|
||||||
base=args.rope_theta,
|
|
||||||
)
|
|
||||||
|
|
||||||
def __call__(
|
|
||||||
self,
|
|
||||||
x: mx.array,
|
|
||||||
mask: Optional[mx.array] = None,
|
|
||||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
||||||
) -> mx.array:
|
|
||||||
B, L, D = x.shape
|
|
||||||
|
|
||||||
queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
|
|
||||||
|
|
||||||
# Prepare the queries, keys and values for the attention computation
|
|
||||||
queries = queries.reshape(B, L, self.num_attention_heads, -1).transpose(
|
|
||||||
0, 2, 1, 3
|
|
||||||
)
|
|
||||||
keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3)
|
|
||||||
values = values.reshape(B, L, self.num_key_value_heads, -1).transpose(
|
|
||||||
0, 2, 1, 3
|
|
||||||
)
|
|
||||||
|
|
||||||
def repeat(a):
|
|
||||||
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
|
||||||
return a.reshape([B, self.num_attention_heads, L, -1])
|
|
||||||
|
|
||||||
keys, values = map(repeat, (keys, values))
|
|
||||||
|
|
||||||
if cache is not None:
|
|
||||||
key_cache, value_cache = cache
|
|
||||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
|
||||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
|
||||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
|
||||||
values = mx.concatenate([value_cache, values], axis=2)
|
|
||||||
else:
|
|
||||||
queries = self.rope(queries)
|
|
||||||
keys = self.rope(keys)
|
|
||||||
|
|
||||||
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
|
|
||||||
if mask is not None:
|
|
||||||
scores += mask
|
|
||||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
|
||||||
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
||||||
return self.wo(output), (keys, values)
|
|
||||||
|
|
||||||
|
|
||||||
class FeedForward(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.w1 = nn.Linear(args.hidden_size, args.intermediate_size, bias=False)
|
|
||||||
self.w2 = nn.Linear(args.intermediate_size, args.hidden_size, bias=False)
|
|
||||||
self.w3 = nn.Linear(args.hidden_size, args.intermediate_size, bias=False)
|
|
||||||
|
|
||||||
def __call__(self, x) -> mx.array:
|
|
||||||
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerBlock(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.attention = Attention(args)
|
|
||||||
self.feed_forward = FeedForward(args=args)
|
|
||||||
self.attention_norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
||||||
self.ffn_norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
||||||
|
|
||||||
def __call__(
|
|
||||||
self,
|
|
||||||
x: mx.array,
|
|
||||||
mask: Optional[mx.array] = None,
|
|
||||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
||||||
) -> mx.array:
|
|
||||||
r, cache = self.attention(self.attention_norm(x), mask, cache)
|
|
||||||
h = x + r
|
|
||||||
r = self.feed_forward(self.ffn_norm(h))
|
|
||||||
out = h + r
|
|
||||||
return out, cache
|
|
||||||
|
|
||||||
|
|
||||||
class DeepseekCoder(nn.Module):
|
|
||||||
def __init__(self, args: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.args = args
|
|
||||||
self.vocab_size = args.vocab_size
|
|
||||||
self.tok_embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
||||||
self.layers = [
|
|
||||||
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
|
||||||
]
|
|
||||||
self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
||||||
self.output = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
||||||
|
|
||||||
def __call__(self, x, mask=None, cache=None):
|
|
||||||
x = self.tok_embeddings(x)
|
|
||||||
mask = None
|
|
||||||
T = x.shape[1]
|
|
||||||
if T > 1:
|
|
||||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
|
|
||||||
mask = mask.astype(x.dtype)
|
|
||||||
|
|
||||||
if cache is None:
|
|
||||||
cache = [None] * len(self.layers)
|
|
||||||
|
|
||||||
for e, layer in enumerate(self.layers):
|
|
||||||
x, cache[e] = layer(x, mask, cache[e])
|
|
||||||
x = self.norm(x)
|
|
||||||
return self.output(x), cache
|
|
||||||
|
|
||||||
|
|
||||||
def generate(
|
|
||||||
prompt: mx.array,
|
|
||||||
model: DeepseekCoder,
|
|
||||||
temp: float = 0.0,
|
|
||||||
):
|
|
||||||
def sample(logits):
|
|
||||||
if temp == 0:
|
|
||||||
return mx.argmax(logits, axis=-1)
|
|
||||||
else:
|
|
||||||
return mx.random.categorical(logits * (1 / temp))
|
|
||||||
|
|
||||||
y = prompt
|
|
||||||
cache = None
|
|
||||||
while True:
|
|
||||||
logits, cache = model(y[None], cache=cache)
|
|
||||||
logits = logits[:, -1, :]
|
|
||||||
y = sample(logits)
|
|
||||||
yield y
|
|
||||||
|
|
||||||
|
|
||||||
def load_model(model_path: str):
|
|
||||||
model_path = Path(model_path)
|
|
||||||
with open(model_path / "config.json", "r") as f:
|
|
||||||
config = json.load(f)
|
|
||||||
config.pop("model_type")
|
|
||||||
quantization = config.pop("quantization", None)
|
|
||||||
model_args = ModelArgs(**config)
|
|
||||||
|
|
||||||
model = DeepseekCoder(model_args)
|
|
||||||
weights = mx.load(str(model_path / "weights.npz"))
|
|
||||||
if quantization is not None:
|
|
||||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
|
||||||
model.update(tree_unflatten(list(weights.items())))
|
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
||||||
return model, tokenizer
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser(description="Deepseek coder inference script")
|
|
||||||
parser.add_argument(
|
|
||||||
"--model-path",
|
|
||||||
type=str,
|
|
||||||
default="mlx_model",
|
|
||||||
help="The path to the mlx model weights, tokenizer, and config",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--prompt",
|
|
||||||
help="The message to be processed by the model",
|
|
||||||
default="### Instruction: \nwrite a quick sort algorithm in python.\n### Response: \n",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-tokens",
|
|
||||||
"-m",
|
|
||||||
type=int,
|
|
||||||
default=100,
|
|
||||||
help="Maximum number of tokens to generate",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--temp",
|
|
||||||
help="The sampling temperature.",
|
|
||||||
type=float,
|
|
||||||
default=0.6,
|
|
||||||
)
|
|
||||||
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
mx.random.seed(args.seed)
|
|
||||||
|
|
||||||
model, tokenizer = load_model(args.model_path)
|
|
||||||
|
|
||||||
prompt = tokenizer(
|
|
||||||
args.prompt,
|
|
||||||
return_tensors="np",
|
|
||||||
return_attention_mask=False,
|
|
||||||
)[
|
|
||||||
"input_ids"
|
|
||||||
][0]
|
|
||||||
|
|
||||||
prompt = mx.array(prompt)
|
|
||||||
|
|
||||||
print(args.prompt, end="", flush=True)
|
|
||||||
|
|
||||||
tokens = []
|
|
||||||
skip = 0
|
|
||||||
for token, _ in zip(
|
|
||||||
generate(prompt, model, args.temp),
|
|
||||||
range(args.max_tokens),
|
|
||||||
):
|
|
||||||
if token == tokenizer.eos_token_id:
|
|
||||||
break
|
|
||||||
tokens.append(token.item())
|
|
||||||
s = tokenizer.decode(tokens)
|
|
||||||
print(s[skip:], end="", flush=True)
|
|
||||||
skip = len(s)
|
|
||||||
|
|
||||||
print(tokenizer.decode(tokens)[skip:], flush=True)
|
|
@ -1,4 +0,0 @@
|
|||||||
torch
|
|
||||||
mlx
|
|
||||||
numpy
|
|
||||||
transformers>=4.35
|
|
@ -45,6 +45,8 @@ Here are a few examples of Hugging Face models which work with this example:
|
|||||||
- [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
- [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||||
- [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
|
- [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
|
||||||
- [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T)
|
- [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T)
|
||||||
|
- [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
|
||||||
|
- [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
|
||||||
|
|
||||||
Most
|
Most
|
||||||
[Mistral](https://huggingface.co/models?library=transformers,safetensors&other=mistral&sort=trending)
|
[Mistral](https://huggingface.co/models?library=transformers,safetensors&other=mistral&sort=trending)
|
||||||
|
@ -5,7 +5,7 @@ import inspect
|
|||||||
import json
|
import json
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional, Tuple
|
from typing import Dict, Optional, Tuple, Union
|
||||||
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
import mlx.nn as nn
|
import mlx.nn as nn
|
||||||
@ -26,11 +26,20 @@ class ModelArgs:
|
|||||||
rope_theta: float = 10000
|
rope_theta: float = 10000
|
||||||
rope_traditional: bool = False
|
rope_traditional: bool = False
|
||||||
model_type: str = None
|
model_type: str = None
|
||||||
|
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
||||||
|
|
||||||
def __post_init__(self):
|
def __post_init__(self):
|
||||||
if self.num_key_value_heads is None:
|
if self.num_key_value_heads is None:
|
||||||
self.num_key_value_heads = self.num_attention_heads
|
self.num_key_value_heads = self.num_attention_heads
|
||||||
|
|
||||||
|
if self.rope_scaling:
|
||||||
|
required_keys = {"factor", "type"}
|
||||||
|
if not all(key in self.rope_scaling for key in required_keys):
|
||||||
|
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
||||||
|
|
||||||
|
if self.rope_scaling["type"] != "linear":
|
||||||
|
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def from_dict(cls, params):
|
def from_dict(cls, params):
|
||||||
return cls(
|
return cls(
|
||||||
@ -73,8 +82,16 @@ class Attention(nn.Module):
|
|||||||
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
||||||
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
||||||
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
||||||
|
rope_scale = (
|
||||||
|
1 / args.rope_scaling["factor"]
|
||||||
|
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
|
||||||
|
else 1
|
||||||
|
)
|
||||||
self.rope = nn.RoPE(
|
self.rope = nn.RoPE(
|
||||||
head_dim, traditional=args.rope_traditional, base=args.rope_theta
|
head_dim,
|
||||||
|
traditional=args.rope_traditional,
|
||||||
|
base=args.rope_theta,
|
||||||
|
scale=rope_scale,
|
||||||
)
|
)
|
||||||
|
|
||||||
def __call__(
|
def __call__(
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
mlx>=0.0.7
|
mlx>=0.0.7
|
||||||
numpy
|
numpy
|
||||||
transformers
|
transformers
|
||||||
|
protobuf
|
Loading…
Reference in New Issue
Block a user