mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
Adding support for mamba (#940)
* initial commit * initial commit * Adding first lines * adding x, and dt projection layers * adding the clamping mechanism * First succesful inference * last commit for today - added custom geenrate function and it works as expected, will try training and then with loading a model from the hub * clean up * save up * almost * update * update * fixed cache handeling * fixed loading * added seperate generat_step method in the model and also in the utils to automaticaly use the generate step mthod in the model class * quick update * still not working * save * still not working * initial commit * utils.py logits = logits[:, -1, :] TypeError: tuple indices must be integers or slices, not tuple * update * update * Fixing the Batching Depfwise Comnvolution and multi token input * fixing generate and logits outputs * Done! * Fixing the cache handling, generating works now trying training * update ACKNOWLEDGEMENTS * removing the model_type if stuff in the _step loop in generate_step and adding MambaCache in base.py for training easier generations and removing mamba in tuner/utils. * quick clean up * update trainer/utils for right initialisation of the layers for LoRA, but not working. * clean up * Forther update to trainer/utils for correct layer selection. Successfull training * removing extra mamba-infer.py file * clean up, reformating will come later * reformat and big clean up, final commit * some speedups and cleanups * fix test * nits * nits --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
e776c970f7
commit
76710f61af
@ -14,3 +14,4 @@ MLX Examples was developed with contributions from the following individuals:
|
||||
- Markus Enzweiler: Added the `cvae` examples.
|
||||
- Prince Canuma: Helped add support for `Starcoder2` models.
|
||||
- Shiyu Li: Added the `Segment Anything Model`.
|
||||
- Gökdeniz Gülmez: Added support for `MiniCPM` and `Mamba`.
|
||||
|
231
llms/mlx_lm/models/mamba.py
Normal file
231
llms/mlx_lm/models/mamba.py
Normal file
@ -0,0 +1,231 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str
|
||||
vocab_size: int
|
||||
hidden_size: int
|
||||
intermediate_size: int
|
||||
state_size: int
|
||||
num_hidden_layers: int
|
||||
conv_kernel: int
|
||||
use_bias: bool
|
||||
use_conv_bias: bool
|
||||
time_step_rank: int
|
||||
tie_word_embeddings: bool = True
|
||||
|
||||
def __post_init__(self):
|
||||
if not hasattr(self, "hidden_size") and hasattr(self, "d_model"):
|
||||
self.hidden_size = self.d_model
|
||||
if not hasattr(self, "intermediate_size") and hasattr(self, "d_inner"):
|
||||
self.intermediate_size = self.d_inner
|
||||
if not hasattr(self, "state_size") and hasattr(self, "d_state"):
|
||||
self.state_size = self.d_state
|
||||
if not hasattr(self, "num_hidden_layers") and hasattr(self, "n_layer"):
|
||||
self.num_hidden_layers = self.n_layer
|
||||
if not hasattr(self, "num_hidden_layers") and hasattr(self, "n_layers"):
|
||||
self.num_hidden_layers = self.n_layers
|
||||
if not hasattr(self, "conv_kernel") and hasattr(self, "d_conv"):
|
||||
self.conv_kernel = self.d_conv
|
||||
if not hasattr(self, "use_bias") and hasattr(self, "bias"):
|
||||
self.use_bias = self.bias
|
||||
if not hasattr(self, "use_conv_bias") and hasattr(self, "conv_bias"):
|
||||
self.use_conv_bias = self.conv_bias
|
||||
|
||||
if self.time_step_rank == "auto":
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||
|
||||
|
||||
class MambaCache:
|
||||
def __init__(self):
|
||||
self.cache = [None, None]
|
||||
|
||||
def __setitem__(self, idx, value):
|
||||
self.cache[idx] = value
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.cache[idx]
|
||||
|
||||
@property
|
||||
def state(self):
|
||||
return self.cache
|
||||
|
||||
|
||||
class DepthWiseConv1d(nn.Module):
|
||||
def __init__(self, channels, kernel_size, bias=True, padding=0):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.kernel_size = kernel_size
|
||||
self.padding = padding
|
||||
self.weight = mx.random.normal((self.channels, kernel_size, 1))
|
||||
self.bias = mx.zeros((channels,)) if bias else None
|
||||
|
||||
def __call__(self, x, cache=None):
|
||||
B, L, C = x.shape
|
||||
groups, K, _ = self.weight.shape
|
||||
|
||||
if cache is not None:
|
||||
x = mx.concatenate([cache, x], axis=1)
|
||||
else:
|
||||
x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)])
|
||||
|
||||
y = mx.conv_general(x, self.weight, groups=groups)
|
||||
|
||||
if self.bias is not None:
|
||||
y = y + self.bias
|
||||
|
||||
return y, x[:, -K + 1 :, :]
|
||||
|
||||
|
||||
class MambaBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
self.hidden_size = args.hidden_size
|
||||
self.ssm_state_size = args.state_size
|
||||
self.conv_kernel_size = args.conv_kernel
|
||||
self.intermediate_size = args.intermediate_size
|
||||
self.time_step_rank = int(args.time_step_rank)
|
||||
self.use_conv_bias = args.use_conv_bias
|
||||
|
||||
self.in_proj = nn.Linear(
|
||||
self.hidden_size, self.intermediate_size * 2, bias=args.use_bias
|
||||
)
|
||||
|
||||
self.conv1d = DepthWiseConv1d(
|
||||
channels=self.intermediate_size,
|
||||
kernel_size=self.conv_kernel_size,
|
||||
bias=self.use_conv_bias,
|
||||
padding=self.conv_kernel_size - 1,
|
||||
)
|
||||
|
||||
self.x_proj = nn.Linear(
|
||||
self.intermediate_size,
|
||||
self.time_step_rank + 2 * self.ssm_state_size,
|
||||
bias=False,
|
||||
)
|
||||
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
|
||||
|
||||
A = mx.repeat(
|
||||
mx.arange(1.0, self.ssm_state_size + 1.0).reshape([1, self.ssm_state_size]),
|
||||
repeats=self.intermediate_size,
|
||||
axis=0,
|
||||
)
|
||||
self.A_log = mx.log(A)
|
||||
self.D = mx.ones([self.intermediate_size])
|
||||
|
||||
self.out_proj = nn.Linear(
|
||||
self.intermediate_size, self.hidden_size, bias=args.use_bias
|
||||
)
|
||||
|
||||
def ssm_step(self, x, state=None):
|
||||
A = -mx.exp(self.A_log)
|
||||
D = self.D
|
||||
deltaBC = self.x_proj(x)
|
||||
delta, B, C = mx.split(
|
||||
deltaBC,
|
||||
indices_or_sections=[
|
||||
self.time_step_rank,
|
||||
self.time_step_rank + self.ssm_state_size,
|
||||
],
|
||||
axis=-1,
|
||||
)
|
||||
delta = nn.softplus(self.dt_proj(delta))
|
||||
new_state = mx.expand_dims(delta * x, -1) * mx.expand_dims(B, 1)
|
||||
if state is not None:
|
||||
new_state += state * mx.exp(mx.expand_dims(delta, -1) * A)
|
||||
y = (new_state @ mx.expand_dims(C, -1)).squeeze(2)
|
||||
y = y + D * x
|
||||
return y, new_state
|
||||
|
||||
def __call__(self, x, cache):
|
||||
B, T, D = x.shape
|
||||
if cache is None:
|
||||
cache = [None, None]
|
||||
|
||||
outputs = []
|
||||
for t in range(T):
|
||||
xt = x[:, t, :]
|
||||
xz = self.in_proj(xt)
|
||||
x_t, z_t = xz.split(indices_or_sections=2, axis=1)
|
||||
conv_out, cache[0] = self.conv1d(mx.expand_dims(x_t, 1), cache[0])
|
||||
x_t = conv_out.squeeze(1)
|
||||
x_t = nn.silu(x_t)
|
||||
y_t, cache[1] = self.ssm_step(x_t, cache[1])
|
||||
z_t = nn.silu(z_t)
|
||||
output_t = y_t * z_t
|
||||
output_t = self.out_proj(output_t)
|
||||
outputs.append(output_t)
|
||||
output = mx.stack(outputs, axis=1)
|
||||
return output
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.mixer = MambaBlock(args)
|
||||
self.norm = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
return self.mixer(self.norm(x), cache) + x
|
||||
|
||||
|
||||
class Mamba(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
||||
self.norm_f = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
x = self.embeddings(x)
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
for layer, c in zip(self.layers, cache):
|
||||
x = layer(x, c)
|
||||
return self.norm_f(x)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
self.backbone = Mamba(args)
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, inputs: mx.array, cache=None):
|
||||
B, T = inputs.shape
|
||||
|
||||
x = self.backbone(inputs, cache)
|
||||
|
||||
if self.args.tie_word_embeddings:
|
||||
logits = self.backbone.embeddings.as_linear(x)
|
||||
else:
|
||||
logits = self.lm_head(x)
|
||||
|
||||
return logits
|
||||
|
||||
def sanitize(self, weights):
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k and v.ndim == 3:
|
||||
weights[k] = v.moveaxis(2, 1)
|
||||
return weights
|
||||
|
||||
def make_cache(self, batch_size: int = 1):
|
||||
return [MambaCache() for _ in range(len(self.layers))]
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.backbone.layers
|
@ -52,7 +52,6 @@ def linear_to_lora_layers(
|
||||
use_dora (bool): If True, uses DoRA instead of LoRA.
|
||||
Default: ``False``
|
||||
"""
|
||||
|
||||
num_layers = len(model.layers)
|
||||
|
||||
if num_lora_layers < 0:
|
||||
@ -140,6 +139,15 @@ def linear_to_lora_layers(
|
||||
"self_attn.kv_b_proj",
|
||||
]
|
||||
)
|
||||
elif model.model_type == "mamba":
|
||||
keys = set(
|
||||
[
|
||||
"mixer.in_proj",
|
||||
"mixer.x_proj",
|
||||
"mixer.dt_proj",
|
||||
"mixer.out_proj",
|
||||
]
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Lora does not support {model.model_type}")
|
||||
|
||||
|
@ -5,6 +5,7 @@ import unittest
|
||||
import mlx.core as mx
|
||||
from mlx.utils import tree_map
|
||||
from mlx_lm.models.base import KVCache, RotatingKVCache
|
||||
from mlx_lm.utils import make_kv_caches
|
||||
|
||||
|
||||
class TestModels(unittest.TestCase):
|
||||
@ -100,13 +101,7 @@ class TestModels(unittest.TestCase):
|
||||
self.assertEqual(outputs.shape, (1, 2, vocab_size))
|
||||
self.assertEqual(outputs.dtype, t)
|
||||
|
||||
kv_heads = (
|
||||
[model.n_kv_heads] * len(model.layers)
|
||||
if isinstance(model.n_kv_heads, int)
|
||||
else model.n_kv_heads
|
||||
)
|
||||
cache = [KVCache(model.head_dim, n) for n in kv_heads]
|
||||
|
||||
cache = make_kv_caches(model)
|
||||
outputs = model(inputs, cache)
|
||||
self.assertEqual(outputs.shape, (1, 2, vocab_size))
|
||||
self.assertEqual(outputs.dtype, t)
|
||||
@ -397,6 +392,26 @@ class TestModels(unittest.TestCase):
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
def test_mamba(self):
|
||||
from mlx_lm.models import mamba
|
||||
|
||||
args = mamba.ModelArgs(
|
||||
model_type="mamba",
|
||||
vocab_size=10000,
|
||||
use_bias=False,
|
||||
use_conv_bias=True,
|
||||
conv_kernel=4,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=24,
|
||||
state_size=16,
|
||||
intermediate_size=1536,
|
||||
time_step_rank=48,
|
||||
)
|
||||
model = mamba.Model(args)
|
||||
self.model_test_runner(
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
def test_gpt2(self):
|
||||
from mlx_lm.models import gpt2
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user