Adding support for mamba (#940)

* initial commit

* initial commit

* Adding first lines

* adding x, and dt projection layers

* adding the clamping mechanism

* First succesful inference

* last commit for today - added custom geenrate function and it works as expected, will try training and then with loading a model from the hub

* clean up

* save up

* almost

* update

* update

* fixed cache handeling

* fixed loading

* added seperate generat_step method in the model and also in the utils to automaticaly use the generate step mthod in the model class

* quick update

* still not working

* save

* still not working

* initial commit

* utils.py logits = logits[:, -1, :] TypeError: tuple indices must be integers or slices, not tuple

* update

* update

* Fixing the Batching Depfwise Comnvolution and multi token input

* fixing generate and logits outputs

* Done!

* Fixing the cache handling, generating works now trying training

* update ACKNOWLEDGEMENTS

* removing the model_type if stuff in the _step loop in generate_step and adding MambaCache in base.py for training easier generations and removing mamba in tuner/utils.

* quick clean up

* update trainer/utils for right initialisation of the layers for LoRA, but not working.

* clean up

* Forther update to trainer/utils for correct layer selection. Successfull training

* removing extra mamba-infer.py file

* clean up, reformating will come later

* reformat and big clean up, final commit

* some speedups and cleanups

* fix test

* nits

* nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
Gökdeniz Gülmez 2024-09-28 16:02:53 +02:00 committed by GitHub
parent e776c970f7
commit 76710f61af
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 263 additions and 8 deletions

View File

@ -14,3 +14,4 @@ MLX Examples was developed with contributions from the following individuals:
- Markus Enzweiler: Added the `cvae` examples. - Markus Enzweiler: Added the `cvae` examples.
- Prince Canuma: Helped add support for `Starcoder2` models. - Prince Canuma: Helped add support for `Starcoder2` models.
- Shiyu Li: Added the `Segment Anything Model`. - Shiyu Li: Added the `Segment Anything Model`.
- Gökdeniz Gülmez: Added support for `MiniCPM` and `Mamba`.

231
llms/mlx_lm/models/mamba.py Normal file
View File

@ -0,0 +1,231 @@
# Copyright © 2024 Apple Inc.
import math
from dataclasses import dataclass
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
vocab_size: int
hidden_size: int
intermediate_size: int
state_size: int
num_hidden_layers: int
conv_kernel: int
use_bias: bool
use_conv_bias: bool
time_step_rank: int
tie_word_embeddings: bool = True
def __post_init__(self):
if not hasattr(self, "hidden_size") and hasattr(self, "d_model"):
self.hidden_size = self.d_model
if not hasattr(self, "intermediate_size") and hasattr(self, "d_inner"):
self.intermediate_size = self.d_inner
if not hasattr(self, "state_size") and hasattr(self, "d_state"):
self.state_size = self.d_state
if not hasattr(self, "num_hidden_layers") and hasattr(self, "n_layer"):
self.num_hidden_layers = self.n_layer
if not hasattr(self, "num_hidden_layers") and hasattr(self, "n_layers"):
self.num_hidden_layers = self.n_layers
if not hasattr(self, "conv_kernel") and hasattr(self, "d_conv"):
self.conv_kernel = self.d_conv
if not hasattr(self, "use_bias") and hasattr(self, "bias"):
self.use_bias = self.bias
if not hasattr(self, "use_conv_bias") and hasattr(self, "conv_bias"):
self.use_conv_bias = self.conv_bias
if self.time_step_rank == "auto":
self.time_step_rank = math.ceil(self.hidden_size / 16)
class MambaCache:
def __init__(self):
self.cache = [None, None]
def __setitem__(self, idx, value):
self.cache[idx] = value
def __getitem__(self, idx):
return self.cache[idx]
@property
def state(self):
return self.cache
class DepthWiseConv1d(nn.Module):
def __init__(self, channels, kernel_size, bias=True, padding=0):
super().__init__()
self.channels = channels
self.kernel_size = kernel_size
self.padding = padding
self.weight = mx.random.normal((self.channels, kernel_size, 1))
self.bias = mx.zeros((channels,)) if bias else None
def __call__(self, x, cache=None):
B, L, C = x.shape
groups, K, _ = self.weight.shape
if cache is not None:
x = mx.concatenate([cache, x], axis=1)
else:
x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)])
y = mx.conv_general(x, self.weight, groups=groups)
if self.bias is not None:
y = y + self.bias
return y, x[:, -K + 1 :, :]
class MambaBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.hidden_size = args.hidden_size
self.ssm_state_size = args.state_size
self.conv_kernel_size = args.conv_kernel
self.intermediate_size = args.intermediate_size
self.time_step_rank = int(args.time_step_rank)
self.use_conv_bias = args.use_conv_bias
self.in_proj = nn.Linear(
self.hidden_size, self.intermediate_size * 2, bias=args.use_bias
)
self.conv1d = DepthWiseConv1d(
channels=self.intermediate_size,
kernel_size=self.conv_kernel_size,
bias=self.use_conv_bias,
padding=self.conv_kernel_size - 1,
)
self.x_proj = nn.Linear(
self.intermediate_size,
self.time_step_rank + 2 * self.ssm_state_size,
bias=False,
)
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
A = mx.repeat(
mx.arange(1.0, self.ssm_state_size + 1.0).reshape([1, self.ssm_state_size]),
repeats=self.intermediate_size,
axis=0,
)
self.A_log = mx.log(A)
self.D = mx.ones([self.intermediate_size])
self.out_proj = nn.Linear(
self.intermediate_size, self.hidden_size, bias=args.use_bias
)
def ssm_step(self, x, state=None):
A = -mx.exp(self.A_log)
D = self.D
deltaBC = self.x_proj(x)
delta, B, C = mx.split(
deltaBC,
indices_or_sections=[
self.time_step_rank,
self.time_step_rank + self.ssm_state_size,
],
axis=-1,
)
delta = nn.softplus(self.dt_proj(delta))
new_state = mx.expand_dims(delta * x, -1) * mx.expand_dims(B, 1)
if state is not None:
new_state += state * mx.exp(mx.expand_dims(delta, -1) * A)
y = (new_state @ mx.expand_dims(C, -1)).squeeze(2)
y = y + D * x
return y, new_state
def __call__(self, x, cache):
B, T, D = x.shape
if cache is None:
cache = [None, None]
outputs = []
for t in range(T):
xt = x[:, t, :]
xz = self.in_proj(xt)
x_t, z_t = xz.split(indices_or_sections=2, axis=1)
conv_out, cache[0] = self.conv1d(mx.expand_dims(x_t, 1), cache[0])
x_t = conv_out.squeeze(1)
x_t = nn.silu(x_t)
y_t, cache[1] = self.ssm_step(x_t, cache[1])
z_t = nn.silu(z_t)
output_t = y_t * z_t
output_t = self.out_proj(output_t)
outputs.append(output_t)
output = mx.stack(outputs, axis=1)
return output
class ResidualBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.mixer = MambaBlock(args)
self.norm = nn.RMSNorm(args.hidden_size)
def __call__(self, x: mx.array, cache):
return self.mixer(self.norm(x), cache) + x
class Mamba(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
self.norm_f = nn.RMSNorm(args.hidden_size)
def __call__(self, x: mx.array, cache):
x = self.embeddings(x)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
x = layer(x, c)
return self.norm_f(x)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.backbone = Mamba(args)
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(self, inputs: mx.array, cache=None):
B, T = inputs.shape
x = self.backbone(inputs, cache)
if self.args.tie_word_embeddings:
logits = self.backbone.embeddings.as_linear(x)
else:
logits = self.lm_head(x)
return logits
def sanitize(self, weights):
for k, v in weights.items():
if "conv1d.weight" in k and v.ndim == 3:
weights[k] = v.moveaxis(2, 1)
return weights
def make_cache(self, batch_size: int = 1):
return [MambaCache() for _ in range(len(self.layers))]
@property
def layers(self):
return self.backbone.layers

View File

@ -52,7 +52,6 @@ def linear_to_lora_layers(
use_dora (bool): If True, uses DoRA instead of LoRA. use_dora (bool): If True, uses DoRA instead of LoRA.
Default: ``False`` Default: ``False``
""" """
num_layers = len(model.layers) num_layers = len(model.layers)
if num_lora_layers < 0: if num_lora_layers < 0:
@ -140,6 +139,15 @@ def linear_to_lora_layers(
"self_attn.kv_b_proj", "self_attn.kv_b_proj",
] ]
) )
elif model.model_type == "mamba":
keys = set(
[
"mixer.in_proj",
"mixer.x_proj",
"mixer.dt_proj",
"mixer.out_proj",
]
)
else: else:
raise ValueError(f"Lora does not support {model.model_type}") raise ValueError(f"Lora does not support {model.model_type}")

View File

@ -5,6 +5,7 @@ import unittest
import mlx.core as mx import mlx.core as mx
from mlx.utils import tree_map from mlx.utils import tree_map
from mlx_lm.models.base import KVCache, RotatingKVCache from mlx_lm.models.base import KVCache, RotatingKVCache
from mlx_lm.utils import make_kv_caches
class TestModels(unittest.TestCase): class TestModels(unittest.TestCase):
@ -100,13 +101,7 @@ class TestModels(unittest.TestCase):
self.assertEqual(outputs.shape, (1, 2, vocab_size)) self.assertEqual(outputs.shape, (1, 2, vocab_size))
self.assertEqual(outputs.dtype, t) self.assertEqual(outputs.dtype, t)
kv_heads = ( cache = make_kv_caches(model)
[model.n_kv_heads] * len(model.layers)
if isinstance(model.n_kv_heads, int)
else model.n_kv_heads
)
cache = [KVCache(model.head_dim, n) for n in kv_heads]
outputs = model(inputs, cache) outputs = model(inputs, cache)
self.assertEqual(outputs.shape, (1, 2, vocab_size)) self.assertEqual(outputs.shape, (1, 2, vocab_size))
self.assertEqual(outputs.dtype, t) self.assertEqual(outputs.dtype, t)
@ -397,6 +392,26 @@ class TestModels(unittest.TestCase):
model, args.model_type, args.vocab_size, args.num_hidden_layers model, args.model_type, args.vocab_size, args.num_hidden_layers
) )
def test_mamba(self):
from mlx_lm.models import mamba
args = mamba.ModelArgs(
model_type="mamba",
vocab_size=10000,
use_bias=False,
use_conv_bias=True,
conv_kernel=4,
hidden_size=768,
num_hidden_layers=24,
state_size=16,
intermediate_size=1536,
time_step_rank=48,
)
model = mamba.Model(args)
self.model_test_runner(
model, args.model_type, args.vocab_size, args.num_hidden_layers
)
def test_gpt2(self): def test_gpt2(self):
from mlx_lm.models import gpt2 from mlx_lm.models import gpt2