Add support for Cohere's Command-R (#565)

* initial commit for command-R

* update mlp, layernorm, lm_head and model args

* add custom layernorm

* add default to tie_word_embeddings

* add layernorm weight type and refactor

* update layernorm (bias conditional) in model/layers

* fix layer norm use traditional rope

* add test

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
Prince Canuma 2024-03-13 15:03:36 +01:00 committed by GitHub
parent 3535408c99
commit 76c3244cc5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 218 additions and 8 deletions

View File

@ -0,0 +1,171 @@
from dataclasses import dataclass
from typing import Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs
from .layers import LayerNorm
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
hidden_size: int = 8192
num_hidden_layers: int = 40
intermediate_size: int = 22528
num_attention_heads: int = 64
num_key_value_heads: int = 64
rope_theta: float = 8000000.0
vocab_size: int = 256000
layer_norm_eps: float = 1e-05
logit_scale: float = 0.0625
attention_bias: bool = False
layer_norm_bias: bool = False
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
head_dim = args.hidden_size // args.num_attention_heads
self.scale = head_dim**-0.5
attetion_bias = args.attention_bias
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attetion_bias)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attetion_bias)
self.rope = nn.RoPE(head_dim, traditional=True, base=args.rope_theta)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output), (keys, values)
class MLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
def __call__(self, x):
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.n_heads = args.num_attention_heads
self.self_attn = Attention(args)
self.mlp = MLP(args.hidden_size, args.intermediate_size)
self.input_layernorm = LayerNorm(
args.hidden_size, eps=args.layer_norm_eps, bias=args.layer_norm_bias
)
self.args = args
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
h = self.input_layernorm(x)
attn_h, cache = self.self_attn(h, mask, cache)
ff_h = self.mlp(h)
return attn_h + ff_h + x, cache
class CohereModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.num_hidden_layers = args.num_hidden_layers
assert self.vocab_size > 0
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
]
self.norm = LayerNorm(
args.hidden_size, eps=args.layer_norm_eps, bias=args.layer_norm_bias
)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.embed_tokens(inputs)
mask = None
if h.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
mask = mask.astype(h.dtype)
if cache is None:
cache = [None] * len(self.layers)
for e, layer in enumerate(self.layers):
h, cache[e] = layer(h, mask, cache[e])
return self.norm(h), cache
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.model_type = args.model_type
self.model = CohereModel(args)
def __call__(
self,
inputs: mx.array,
cache=None,
):
out, cache = self.model(inputs, cache)
out = out @ self.model.embed_tokens.weight.T
out = out * self.model.args.logit_scale
return out, cache
@property
def layers(self):
return self.model.layers

View File

@ -23,29 +23,58 @@ class RMSNorm(nn.Module):
@partial(mx.compile, shapeless=True) @partial(mx.compile, shapeless=True)
def ln_norm(x, eps, weight=None, bias=None): def ln_norm(x, eps, weight=None, bias=None):
"""
Layer normalization for input tensor x.
Args:
x (np.ndarray): Input tensor.
eps (float, optional): Small value to avoid division by zero.
weight (np.ndarray, optional): Weight tensor for normalization.
bias (np.ndarray, optional): Bias tensor for normalization.
Returns:
np.ndarray: Normalized tensor.
"""
t = x.dtype t = x.dtype
x = x.astype(mx.float32) x = x.astype(mx.float32)
# Compute mean and variance along the last dimension
means = mx.mean(x, axis=-1, keepdims=True) means = mx.mean(x, axis=-1, keepdims=True)
var = mx.var(x, axis=-1, keepdims=True) var = mx.var(x, axis=-1, keepdims=True)
# Normalize the input tensor
x = (x - means) * mx.rsqrt(var + eps) x = (x - means) * mx.rsqrt(var + eps)
x = x.astype(t) x = x.astype(t)
return weight * x + bias if weight is not None else x
# Apply weight and bias if provided
if weight is not None:
x = x * weight
if bias is not None:
x = x + bias
return x
class LayerNorm(nn.Module): class LayerNorm(nn.Module):
def __init__(self, dims: int, eps: float = 1e-5, affine: bool = True): def __init__(
self, dims: int, eps: float = 1e-5, affine: bool = True, bias: bool = True
):
super().__init__() super().__init__()
if affine:
self.bias = mx.zeros((dims,))
self.weight = mx.ones((dims,))
self.eps = eps self.eps = eps
self.dims = dims self.dims = dims
self.affine = affine
if affine:
self.weight = mx.ones((dims,))
self.bias = mx.zeros((dims,)) if bias else None
def _extra_repr(self): def _extra_repr(self):
return f"{self.dims}, eps={self.eps}, affine={'weight' in self}" return f"{self.dims}, eps={self.eps}, affine={'weight' in self}"
def __call__(self, x: mx.array) -> mx.array: def __call__(self, x: mx.array) -> mx.array:
if "weight" in self: if self.affine:
if self.bias is not None:
return ln_norm(x, self.eps, self.weight, self.bias) return ln_norm(x, self.eps, self.weight, self.bias)
else:
return ln_norm(x, self.eps, self.weight)
else: else:
return ln_norm(x, self.eps) return ln_norm(x, self.eps)

View File

@ -254,7 +254,6 @@ class TestModels(unittest.TestCase):
self.assertEqual(sanitized_weights["lm_head.weight"], "some_value") self.assertEqual(sanitized_weights["lm_head.weight"], "some_value")
def test_starcoder2_tie_word_embeddings_with_lm_head_weight(self): def test_starcoder2_tie_word_embeddings_with_lm_head_weight(self):
from mlx_lm.models import starcoder2 from mlx_lm.models import starcoder2
args = starcoder2.ModelArgs( args = starcoder2.ModelArgs(
@ -276,6 +275,17 @@ class TestModels(unittest.TestCase):
self.assertIn("lm_head.weight", sanitized_weights) self.assertIn("lm_head.weight", sanitized_weights)
self.assertEqual(sanitized_weights["lm_head.weight"], "existing_value") self.assertEqual(sanitized_weights["lm_head.weight"], "existing_value")
def test_cohere(self):
from mlx_lm.models import cohere
args = cohere.ModelArgs(
model_type="cohere",
)
model = cohere.Model(args)
self.model_test_runner(
model, args.model_type, args.vocab_size, args.num_hidden_layers
)
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()