mirror of
				https://github.com/ml-explore/mlx-examples.git
				synced 2025-10-31 19:18:09 +08:00 
			
		
		
		
	adding support for kyutai's helium (#1208)
* initial commit * adding helium into training * Update ACKNOWLEDGMENTS.md * nits * nits * fixes / nits --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
		
							
								
								
									
										183
									
								
								llms/mlx_lm/models/helium.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										183
									
								
								llms/mlx_lm/models/helium.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,183 @@ | ||||
| from dataclasses import dataclass | ||||
| from typing import Any, Optional, Tuple | ||||
|  | ||||
| import mlx.core as mx | ||||
| import mlx.nn as nn | ||||
|  | ||||
| from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention | ||||
|  | ||||
|  | ||||
| @dataclass | ||||
| class ModelArgs(BaseModelArgs): | ||||
|     hidden_size: int | ||||
|     num_hidden_layers: int | ||||
|     intermediate_size: int | ||||
|     num_attention_heads: int | ||||
|     num_key_value_heads: int | ||||
|     rms_norm_eps: float | ||||
|     vocab_size: int | ||||
|     attention_bias: bool | ||||
|     head_dim: int | ||||
|     max_position_embeddings: int | ||||
|     mlp_bias: bool | ||||
|     model_type: str | ||||
|     rope_theta: float | ||||
|     tie_word_embeddings: bool | ||||
|  | ||||
|  | ||||
| class HeliumAttention(nn.Module): | ||||
|     def __init__(self, args: ModelArgs): | ||||
|         super().__init__() | ||||
|  | ||||
|         dim = args.hidden_size | ||||
|         self.n_heads = n_heads = args.num_attention_heads | ||||
|         assert args.num_key_value_heads is not None | ||||
|         self.n_kv_heads = n_kv_heads = args.num_key_value_heads | ||||
|  | ||||
|         head_dim = args.hidden_size // n_heads | ||||
|         self.scale = head_dim**-0.5 | ||||
|  | ||||
|         self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias) | ||||
|         self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias) | ||||
|         self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias) | ||||
|         self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False) | ||||
|         self.rope = nn.RoPE(head_dim, traditional=True, base=args.rope_theta) | ||||
|  | ||||
|     def __call__( | ||||
|         self, | ||||
|         x: mx.array, | ||||
|         mask: Optional[mx.array] = None, | ||||
|         cache: Optional[Any] = None, | ||||
|     ) -> mx.array: | ||||
|         B, L, D = x.shape | ||||
|  | ||||
|         queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) | ||||
|  | ||||
|         # Prepare the queries, keys and values for the attention computation | ||||
|         queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) | ||||
|         keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) | ||||
|         values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) | ||||
|  | ||||
|         if cache is not None: | ||||
|             queries = self.rope(queries, offset=cache.offset) | ||||
|             keys = self.rope(keys, offset=cache.offset) | ||||
|             keys, values = cache.update_and_fetch(keys, values) | ||||
|         else: | ||||
|             queries = self.rope(queries) | ||||
|             keys = self.rope(keys) | ||||
|  | ||||
|         output = scaled_dot_product_attention( | ||||
|             queries, keys, values, cache=cache, scale=self.scale, mask=mask | ||||
|         ) | ||||
|         output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) | ||||
|         return self.o_proj(output) | ||||
|  | ||||
|  | ||||
| class HeliumMLP(nn.Module): | ||||
|     def __init__(self, args: ModelArgs): | ||||
|         super().__init__() | ||||
|         self.hidden_size = args.hidden_size | ||||
|         self.intermediate_size = args.intermediate_size | ||||
|  | ||||
|         self.gate_proj = nn.Linear( | ||||
|             self.hidden_size, self.intermediate_size, bias=args.mlp_bias | ||||
|         ) | ||||
|         self.up_proj = nn.Linear( | ||||
|             self.hidden_size, self.intermediate_size, bias=args.mlp_bias | ||||
|         ) | ||||
|         self.down_proj = nn.Linear( | ||||
|             self.intermediate_size, self.hidden_size, bias=args.mlp_bias | ||||
|         ) | ||||
|  | ||||
|     def __call__(self, x: mx.array) -> mx.array: | ||||
|         return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) | ||||
|  | ||||
|  | ||||
| class HeliumDecoderLayer(nn.Module): | ||||
|     def __init__(self, args: ModelArgs): | ||||
|         super().__init__() | ||||
|         self.hidden_size = args.hidden_size | ||||
|  | ||||
|         self.self_attn = HeliumAttention(args) | ||||
|         self.mlp = HeliumMLP(args) | ||||
|         self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) | ||||
|         self.post_attention_layernorm = nn.RMSNorm( | ||||
|             args.hidden_size, eps=args.rms_norm_eps | ||||
|         ) | ||||
|  | ||||
|     def __call__( | ||||
|         self, | ||||
|         x: mx.array, | ||||
|         mask: Optional[mx.array] = None, | ||||
|         cache: Optional[Any] = None, | ||||
|     ) -> mx.array: | ||||
|         r = self.self_attn(self.input_layernorm(x), mask, cache) | ||||
|         h = x + r | ||||
|         r = self.mlp(self.post_attention_layernorm(h)) | ||||
|         out = h + r | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class HeliumModel(nn.Module): | ||||
|     def __init__(self, args: ModelArgs): | ||||
|         super().__init__() | ||||
|         self.num_hidden_layers = args.num_hidden_layers | ||||
|         self.vocab_size = args.vocab_size | ||||
|  | ||||
|         assert self.vocab_size > 0 | ||||
|         self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) | ||||
|  | ||||
|         self.layers = [HeliumDecoderLayer(args) for _ in range(args.num_hidden_layers)] | ||||
|  | ||||
|         self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) | ||||
|  | ||||
|     def __call__( | ||||
|         self, | ||||
|         inputs: mx.array, | ||||
|         mask: mx.array = None, | ||||
|         cache=None, | ||||
|     ) -> mx.array: | ||||
|         h = self.embed_tokens(inputs) | ||||
|  | ||||
|         if mask is None: | ||||
|             mask = create_attention_mask(h, cache) | ||||
|  | ||||
|         if cache is None: | ||||
|             cache = [None] * len(self.layers) | ||||
|  | ||||
|         for layer, c in zip(self.layers, cache): | ||||
|             h = layer(h, mask, c) | ||||
|  | ||||
|         return self.norm(h) | ||||
|  | ||||
|  | ||||
| class Model(nn.Module): | ||||
|     def __init__(self, args: ModelArgs): | ||||
|         super().__init__() | ||||
|         self.args = args | ||||
|         self.model_type = args.model_type | ||||
|  | ||||
|         self.model = HeliumModel(args) | ||||
|  | ||||
|         self.vocab_size = args.vocab_size | ||||
|         self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) | ||||
|  | ||||
|         if not args.tie_word_embeddings: | ||||
|             self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) | ||||
|  | ||||
|     def __call__( | ||||
|         self, | ||||
|         inputs: mx.array, | ||||
|         mask: mx.array = None, | ||||
|         cache=None, | ||||
|     ) -> mx.array: | ||||
|         out = self.model(inputs, mask, cache) | ||||
|         if self.args.tie_word_embeddings: | ||||
|             out = self.model.embed_tokens.as_linear(out) | ||||
|         else: | ||||
|             out = self.lm_head(out) | ||||
|         return out | ||||
|  | ||||
|     @property | ||||
|     def layers(self): | ||||
|         return self.model.layers | ||||
| @@ -94,6 +94,7 @@ def linear_to_lora_layers( | ||||
|         "phimoe", | ||||
|         "gemma", | ||||
|         "gemma2", | ||||
|         "helium", | ||||
|         "starcoder2", | ||||
|         "cohere", | ||||
|         "cohere2", | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Gökdeniz Gülmez
					Gökdeniz Gülmez