adding support for kyutai's helium (#1208)

* initial commit

* adding helium into training

* Update ACKNOWLEDGMENTS.md

* nits

* nits

* fixes / nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
Gökdeniz Gülmez 2025-01-26 16:19:07 +01:00 committed by GitHub
parent 9a3ddc3e65
commit 77faa14ba4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 185 additions and 1 deletions

View File

@ -14,4 +14,4 @@ MLX Examples was developed with contributions from the following individuals:
- Markus Enzweiler: Added the `cvae` examples.
- Prince Canuma: Helped add support for `Starcoder2` models.
- Shiyu Li: Added the `Segment Anything Model`.
- Gökdeniz Gülmez: Added support for `MiniCPM`, `Mamba` and support for `full-fine-tuning`.
- Gökdeniz Gülmez: Added support for `MiniCPM`, `Helium`, `Mamba version 1` and support for `full-fine-tuning`.

View File

@ -0,0 +1,183 @@
from dataclasses import dataclass
from typing import Any, Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
@dataclass
class ModelArgs(BaseModelArgs):
hidden_size: int
num_hidden_layers: int
intermediate_size: int
num_attention_heads: int
num_key_value_heads: int
rms_norm_eps: float
vocab_size: int
attention_bias: bool
head_dim: int
max_position_embeddings: int
mlp_bias: bool
model_type: str
rope_theta: float
tie_word_embeddings: bool
class HeliumAttention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
assert args.num_key_value_heads is not None
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
head_dim = args.hidden_size // n_heads
self.scale = head_dim**-0.5
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
self.rope = nn.RoPE(head_dim, traditional=True, base=args.rope_theta)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = scaled_dot_product_attention(
queries, keys, values, cache=cache, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
class HeliumMLP(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.intermediate_size = args.intermediate_size
self.gate_proj = nn.Linear(
self.hidden_size, self.intermediate_size, bias=args.mlp_bias
)
self.up_proj = nn.Linear(
self.hidden_size, self.intermediate_size, bias=args.mlp_bias
)
self.down_proj = nn.Linear(
self.intermediate_size, self.hidden_size, bias=args.mlp_bias
)
def __call__(self, x: mx.array) -> mx.array:
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
class HeliumDecoderLayer(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.self_attn = HeliumAttention(args)
self.mlp = HeliumMLP(args)
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.post_attention_layernorm = nn.RMSNorm(
args.hidden_size, eps=args.rms_norm_eps
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
r = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
return out
class HeliumModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.num_hidden_layers = args.num_hidden_layers
self.vocab_size = args.vocab_size
assert self.vocab_size > 0
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [HeliumDecoderLayer(args) for _ in range(args.num_hidden_layers)]
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
inputs: mx.array,
mask: mx.array = None,
cache=None,
) -> mx.array:
h = self.embed_tokens(inputs)
if mask is None:
mask = create_attention_mask(h, cache)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, mask, c)
return self.norm(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.model = HeliumModel(args)
self.vocab_size = args.vocab_size
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
mask: mx.array = None,
cache=None,
) -> mx.array:
out = self.model(inputs, mask, cache)
if self.args.tie_word_embeddings:
out = self.model.embed_tokens.as_linear(out)
else:
out = self.lm_head(out)
return out
@property
def layers(self):
return self.model.layers

View File

@ -94,6 +94,7 @@ def linear_to_lora_layers(
"phimoe",
"gemma",
"gemma2",
"helium",
"starcoder2",
"cohere",
"cohere2",