mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00
feat: add mistral tps (#173)
* feat: add mistral tps * eval params before timing + format --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
188a91074b
commit
7ae445f6c7
@ -2,6 +2,7 @@
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Tuple
|
||||
@ -204,6 +205,7 @@ def load_model(folder: str):
|
||||
if quantization is not None:
|
||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||
model.update(weights)
|
||||
mx.eval(model.parameters())
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
@ -265,12 +267,17 @@ if __name__ == "__main__":
|
||||
model, tokenizer = load_model(args.model_path)
|
||||
|
||||
print("[INFO] Starting generation...")
|
||||
|
||||
tic = time.time()
|
||||
print(args.prompt, end="", flush=True)
|
||||
prompt = mx.array(tokenizer.encode(args.prompt))
|
||||
tokens = []
|
||||
for token, _ in zip(generate(prompt, model, args.temp), range(args.max_tokens)):
|
||||
for token, ntoks in zip(generate(prompt, model, args.temp), range(args.max_tokens)):
|
||||
tokens.append(token)
|
||||
if ntoks == 0:
|
||||
toc = time.time()
|
||||
mx.eval(tokens)
|
||||
prompt_tps = prompt.size / (toc - tic)
|
||||
tic = time.time()
|
||||
|
||||
if (len(tokens) % args.tokens_per_eval) == 0:
|
||||
mx.eval(tokens)
|
||||
@ -282,3 +289,8 @@ if __name__ == "__main__":
|
||||
s = tokenizer.decode([t.item() for t in tokens])
|
||||
print(s, flush=True)
|
||||
print("------")
|
||||
generation_tps = ntoks / (time.time() - tic)
|
||||
print(
|
||||
f"Tokens per second: prompt {prompt_tps:.3f}, "
|
||||
f"generation {generation_tps:.3f}"
|
||||
)
|
||||
|
@ -212,7 +212,10 @@ def iterate_batches(dset, tokenizer, batch_size, train=False):
|
||||
|
||||
# Check if any sequence is longer than 2048 tokens
|
||||
if max(lengths) > 2048:
|
||||
print("Warning: Some sequences are longer than 2048 tokens. Consider pre-splitting your data to save memory.")
|
||||
print(
|
||||
"[WARNING] Some sequences are longer than 2048 tokens. "
|
||||
"Consider pre-splitting your data to save memory."
|
||||
)
|
||||
|
||||
# Pad to the max length
|
||||
batch_arr = np.zeros((batch_size, max(lengths)), np.int32)
|
||||
|
@ -1,6 +1,6 @@
|
||||
import argparse
|
||||
|
||||
from transformers import AutoTokenizer, T5EncoderModel, AutoModelForSeq2SeqLM
|
||||
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, T5EncoderModel
|
||||
|
||||
|
||||
def embed(t5_model: str):
|
||||
|
6
t5/t5.py
6
t5/t5.py
@ -6,7 +6,7 @@ import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
from mlx.utils import tree_map, tree_unflatten
|
||||
from transformers import T5Config, AutoTokenizer
|
||||
from transformers import AutoTokenizer, T5Config
|
||||
|
||||
|
||||
def _relative_position_bucket(
|
||||
@ -252,9 +252,7 @@ class TransformerDecoder(nn.Module):
|
||||
def __init__(self, config: T5Config):
|
||||
super().__init__()
|
||||
n_layers = getattr(config, "num_decoder_layers", config.num_layers)
|
||||
self.layers = [
|
||||
TransformerDecoderLayer(config) for i in range(n_layers)
|
||||
]
|
||||
self.layers = [TransformerDecoderLayer(config) for i in range(n_layers)]
|
||||
self.ln = RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
||||
self.relative_attention_bias = RelativePositionBias(config, bidirectional=False)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user