mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 04:14:38 +08:00
Move lora example to use the same model format / conversion as hf_llm
(#252)
* huffing face the lora example to allow more models * fixes * comments * more readme nits * fusion + works better for qlora * nits' * comments
This commit is contained in:
@@ -2,33 +2,23 @@
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import json
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
import torch
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
|
||||
from lora import Model, ModelArgs
|
||||
import utils
|
||||
from mlx.utils import tree_flatten
|
||||
from models import Model, ModelArgs
|
||||
|
||||
|
||||
def quantize(weights, config, args):
|
||||
quantized_config = copy.deepcopy(config)
|
||||
|
||||
# Load the model:
|
||||
model = Model(ModelArgs(**config))
|
||||
weights = tree_map(mx.array, weights)
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
model = Model(ModelArgs.from_dict(config))
|
||||
model.load_weights(list(weights.items()))
|
||||
|
||||
# Quantize the model:
|
||||
nn.QuantizedLinear.quantize_module(
|
||||
model,
|
||||
args.q_group_size,
|
||||
args.q_bits,
|
||||
)
|
||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
||||
|
||||
# Update the config:
|
||||
quantized_config["quantization"] = {
|
||||
@@ -42,19 +32,18 @@ def quantize(weights, config, args):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Convert Mistral or Llama models to MLX.",
|
||||
description="Convert Hugging Face model to MLX format"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--torch-path",
|
||||
"--hf-path",
|
||||
type=str,
|
||||
default="mistral-7B-v0.1/",
|
||||
help="Path to the torch model directory",
|
||||
help="Path to the Hugging Face model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mlx-path",
|
||||
type=str,
|
||||
default="mlx_model/",
|
||||
help="The directory to store the mlx model",
|
||||
default="mlx_model",
|
||||
help="Path to save the MLX model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-q",
|
||||
@@ -74,50 +63,31 @@ if __name__ == "__main__":
|
||||
type=int,
|
||||
default=4,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
torch_path = Path(args.torch_path)
|
||||
mlx_path = Path(args.mlx_path)
|
||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Copy the tokenizer
|
||||
tokenizer_path = torch_path / "tokenizer.model"
|
||||
if not tokenizer_path.exists():
|
||||
print(f"Make sure there is a file tokenizer.model in {args.torch_path}")
|
||||
exit(0)
|
||||
shutil.copyfile(
|
||||
str(tokenizer_path),
|
||||
str(mlx_path / "tokenizer.model"),
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
help="Type to save the parameters, ignored if -q is given.",
|
||||
type=str,
|
||||
choices=["float16", "bfloat16", "float32"],
|
||||
default="float16",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--upload-name",
|
||||
help="The name of model to upload to Hugging Face MLX Community",
|
||||
type=str,
|
||||
default=None,
|
||||
)
|
||||
|
||||
# Load the torch model weights to numpy:
|
||||
weights = torch.load(str(torch_path / "consolidated.00.pth"))
|
||||
for k, v in weights.items():
|
||||
weights[k] = v.to(torch.float16).numpy()
|
||||
args = parser.parse_args()
|
||||
|
||||
# Standardize the params
|
||||
with open(torch_path / "params.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
unused = ["multiple_of", "sliding_window"]
|
||||
for k in unused:
|
||||
config.pop(k, None)
|
||||
n_heads = config["n_heads"]
|
||||
if "n_kv_heads" not in config:
|
||||
config["n_kv_heads"] = n_heads
|
||||
if "head_dim" not in config:
|
||||
config["head_dim"] = config["dim"] // n_heads
|
||||
if "hidden_dim" not in config:
|
||||
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
|
||||
if config.get("vocab_size", -1) < 0:
|
||||
config["vocab_size"] = weights["output.weight"].shape[0]
|
||||
print("[INFO] Loading")
|
||||
weights, config, tokenizer = utils.fetch_from_hub(args.hf_path)
|
||||
|
||||
dtype = mx.float16 if args.quantize else getattr(mx, args.dtype)
|
||||
weights = {k: v.astype(dtype) for k, v in weights.items()}
|
||||
if args.quantize:
|
||||
print("[INFO] Quantizing")
|
||||
weights, config = quantize(weights, config, args)
|
||||
|
||||
np.savez(str(mlx_path / "weights.npz"), **weights)
|
||||
|
||||
with open(mlx_path / "config.json", "w") as outfile:
|
||||
json.dump(config, outfile, indent=4)
|
||||
utils.save_model(args.mlx_path, weights, tokenizer, config)
|
||||
if args.upload_name is not None:
|
||||
utils.upload_to_hub(args.mlx_path, args.upload_name, args.hf_path)
|
||||
|
Reference in New Issue
Block a user