mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-10-23 22:18:06 +08:00
Move lora example to use the same model format / conversion as hf_llm
(#252)
* huffing face the lora example to allow more models * fixes * comments * more readme nits * fusion + works better for qlora * nits' * comments
This commit is contained in:
90
lora/utils.py
Normal file
90
lora/utils.py
Normal file
@@ -0,0 +1,90 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import glob
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.core as mx
|
||||
import transformers
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
|
||||
def fetch_from_hub(hf_path: str):
|
||||
model_path = snapshot_download(
|
||||
repo_id=hf_path,
|
||||
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
|
||||
)
|
||||
weight_files = glob.glob(f"{model_path}/*.safetensors")
|
||||
if len(weight_files) == 0:
|
||||
raise FileNotFoundError("No safetensors found in {}".format(model_path))
|
||||
|
||||
weights = {}
|
||||
for wf in weight_files:
|
||||
weights.update(mx.load(wf).items())
|
||||
|
||||
config = transformers.AutoConfig.from_pretrained(hf_path)
|
||||
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
||||
hf_path,
|
||||
)
|
||||
return weights, config.to_dict(), tokenizer
|
||||
|
||||
|
||||
def upload_to_hub(path: str, name: str, hf_path: str):
|
||||
import os
|
||||
|
||||
from huggingface_hub import HfApi, ModelCard, logging
|
||||
|
||||
repo_id = f"mlx-community/{name}"
|
||||
|
||||
card = ModelCard.load(hf_path)
|
||||
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
|
||||
card.text = f"""
|
||||
# {name}
|
||||
This model was converted to MLX format from [`{hf_path}`]().
|
||||
Refer to the [original model card](https://huggingface.co/{hf_path}) for more details on the model.
|
||||
## Use with mlx
|
||||
```bash
|
||||
pip install mlx
|
||||
git clone https://github.com/ml-explore/mlx-examples.git
|
||||
cd mlx-examples/llms/hf_llm
|
||||
python generate.py --model {repo_id} --prompt "My name is"
|
||||
```
|
||||
"""
|
||||
card.save(os.path.join(path, "README.md"))
|
||||
|
||||
logging.set_verbosity_info()
|
||||
|
||||
api = HfApi()
|
||||
api.create_repo(repo_id=repo_id, exist_ok=True)
|
||||
api.upload_folder(
|
||||
folder_path=path,
|
||||
repo_id=repo_id,
|
||||
repo_type="model",
|
||||
)
|
||||
|
||||
|
||||
def make_shards(weights: dict, max_file_size_gibibyte: int = 15):
|
||||
max_file_size_bytes = max_file_size_gibibyte << 30
|
||||
shards = []
|
||||
shard, shard_size = {}, 0
|
||||
for k, v in weights.items():
|
||||
estimated_size = v.size * v.dtype.size
|
||||
if shard_size + estimated_size > max_file_size_bytes:
|
||||
shards.append(shard)
|
||||
shard, shard_size = {}, 0
|
||||
shard[k] = v
|
||||
shard_size += estimated_size
|
||||
shards.append(shard)
|
||||
return shards
|
||||
|
||||
|
||||
def save_model(save_dir: str, weights, tokenizer, config):
|
||||
save_dir = Path(save_dir)
|
||||
save_dir.mkdir(parents=True, exist_ok=True)
|
||||
shards = make_shards(weights)
|
||||
for i, shard in enumerate(shards):
|
||||
# TODO use HF file name scheme for simplicity
|
||||
mx.save_safetensors(str(save_dir / f"weights.{i:02d}.safetensors"), shard)
|
||||
tokenizer.save_pretrained(save_dir)
|
||||
with open(save_dir / "config.json", "w") as fid:
|
||||
json.dump(config, fid, indent=4)
|
Reference in New Issue
Block a user