mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-10 11:16:40 +08:00
save checkpoint
This commit is contained in:
parent
906f972d36
commit
800b60239c
@ -321,25 +321,34 @@ class RotatingKVCache(_BaseCache):
|
||||
return n
|
||||
|
||||
|
||||
class MambaCache(_BaseCache):
|
||||
class MambaCache:
|
||||
def __init__(self):
|
||||
# cache[0] is conv state, cache[1] is ssm state
|
||||
self.cache = [None, None]
|
||||
self.offset = 0
|
||||
|
||||
|
||||
def __setitem__(self, idx, value):
|
||||
self.cache[idx] = value
|
||||
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.cache[idx]
|
||||
|
||||
|
||||
@property
|
||||
def state(self):
|
||||
return self.cache
|
||||
|
||||
|
||||
@state.setter
|
||||
def state(self, v):
|
||||
self.cache = v
|
||||
|
||||
@property
|
||||
def conv_states(self):
|
||||
return [self.cache[0]]
|
||||
|
||||
@property
|
||||
def ssm_states(self):
|
||||
return [self.cache[1]]
|
||||
|
||||
|
||||
|
||||
class Mamba2Cache(_BaseCache):
|
||||
|
@ -1,11 +1,11 @@
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Tuple, Union
|
||||
from typing import Tuple, Union, Optional
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .cache import Mamba2Cache
|
||||
from .cache import MambaCache
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
@ -61,8 +61,9 @@ class MambaRMSNormGated(nn.Module):
|
||||
def silu(x):
|
||||
return x * mx.sigmoid(x)
|
||||
|
||||
|
||||
def ssd(x, A, B, C, chunk_size):
|
||||
# Replace einsum operations with explicit reshape and matrix multiply
|
||||
# Not getting used
|
||||
batch, seqlen, nheads, dim = x.shape
|
||||
B = mx.expand_dims(B, axis=2)
|
||||
C = mx.expand_dims(C, axis=2)
|
||||
@ -91,179 +92,134 @@ def ssd(x, A, B, C, chunk_size):
|
||||
return mx.concatenate(outputs, axis=1), state
|
||||
|
||||
|
||||
class DepthWiseConv1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.padding = padding
|
||||
self.groups = groups if groups is not None else in_channels
|
||||
|
||||
assert in_channels == out_channels, "In and out channels must be same for depthwise convolution"
|
||||
assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
|
||||
|
||||
# Initialize weight with correct shape [C_out, 1, kernel_size]
|
||||
self.weight = mx.random.normal((out_channels, 1, kernel_size))
|
||||
self.bias = mx.zeros((out_channels,)) if bias else None
|
||||
|
||||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||
B, L, C = x.shape
|
||||
K = self.kernel_size
|
||||
|
||||
assert C == self.in_channels, f"Input channels {C} doesn't match expected {self.in_channels}"
|
||||
|
||||
# Handle caching for sequential processing
|
||||
if cache is not None and cache.conv_states[0] is not None:
|
||||
if isinstance(cache.conv_states[0], type(None)):
|
||||
cache.conv_states[0] = mx.zeros((B, K-1, C))
|
||||
x = mx.concatenate([cache.conv_states[0], x], axis=1)
|
||||
|
||||
# Process each channel independently
|
||||
outputs = []
|
||||
for c in range(C):
|
||||
# Extract and reshape the channel
|
||||
x_c = x[:, :, c] # [B, L]
|
||||
x_c = mx.expand_dims(x_c, axis=1) # [B, 1, L]
|
||||
|
||||
# Get weight for this channel - already in correct shape [1, 1, K]
|
||||
w_c = mx.expand_dims(self.weight[c], axis=0) # Ensure [1, 1, K]
|
||||
|
||||
# Apply convolution
|
||||
y_c = mx.conv_general(
|
||||
x_c,
|
||||
w_c,
|
||||
stride=1,
|
||||
padding=self.padding
|
||||
)
|
||||
|
||||
if self.bias is not None:
|
||||
y_c = y_c + self.bias[c]
|
||||
|
||||
outputs.append(mx.squeeze(y_c, axis=1))
|
||||
|
||||
y = mx.stack(outputs, axis=-1)
|
||||
|
||||
# Update cache
|
||||
if cache is not None:
|
||||
cache.conv_states[0] = x[:, -K+1:, :] if x.shape[1] >= K else x
|
||||
|
||||
return y
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
self.chunk_size = args.chunk_size
|
||||
|
||||
|
||||
d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
|
||||
self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias)
|
||||
|
||||
|
||||
self.conv_dim = args.intermediate_size + 2 * args.state_size
|
||||
self.conv1d = DepthWiseConv1d(
|
||||
|
||||
# Replace DepthWiseConv1d with grouped nn.Conv1d
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=self.conv_dim,
|
||||
out_channels=self.conv_dim,
|
||||
kernel_size=args.conv_kernel,
|
||||
groups=self.conv_dim,
|
||||
groups=self.conv_dim, # Makes it depthwise
|
||||
bias=args.use_conv_bias,
|
||||
padding=args.conv_kernel - 1
|
||||
padding=0 # We'll handle padding via cache
|
||||
)
|
||||
|
||||
|
||||
self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
self.D = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
|
||||
|
||||
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||||
|
||||
|
||||
if args.rescale_prenorm_residual:
|
||||
layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
|
||||
self.out_proj.weight = self.out_proj.weight * layer_scale
|
||||
|
||||
def __call__(self, u: mx.array, cache=None):
|
||||
# Expect input shape: [batch_size, 1, hidden_size]
|
||||
|
||||
def __call__(self, u: mx.array, cache: Optional[MambaCache] = None):
|
||||
batch_size, seq_len, _ = u.shape
|
||||
pad_size = self.chunk_size - (seq_len % self.chunk_size)
|
||||
|
||||
|
||||
# Initialize cache if needed
|
||||
if cache is None:
|
||||
cache = MambaCache()
|
||||
|
||||
# Initialize states if needed
|
||||
if cache.conv_states[0] is None:
|
||||
cache.conv_states[0] = mx.zeros((
|
||||
if cache[0] is None: # conv state
|
||||
cache[0] = mx.zeros((
|
||||
batch_size,
|
||||
self.args.conv_kernel - 1,
|
||||
self.conv_dim
|
||||
))
|
||||
|
||||
if cache.ssm_states[0] is None:
|
||||
cache.ssm_states[0] = mx.zeros((
|
||||
|
||||
if cache[1] is None: # ssm state
|
||||
cache[1] = mx.zeros((
|
||||
batch_size,
|
||||
self.args.num_heads,
|
||||
self.args.head_dim,
|
||||
self.args.state_size
|
||||
))
|
||||
|
||||
|
||||
# Project input
|
||||
zxbcdt = self.in_proj(u)
|
||||
|
||||
|
||||
# Split projections
|
||||
z = zxbcdt[:, :, :self.args.intermediate_size]
|
||||
xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size]
|
||||
dt = zxbcdt[:, :, -(self.args.num_heads):]
|
||||
|
||||
|
||||
# Process delta time
|
||||
dt = mx.reshape(dt, (batch_size, seq_len, self.args.num_heads))
|
||||
dt = mx.squeeze(dt, axis=0) # Remove sequence dimension for single token
|
||||
dt = mx.squeeze(dt, axis=0)
|
||||
dt = mx.clip(
|
||||
nn.softplus(dt + self.dt_bias),
|
||||
self.args.time_step_min,
|
||||
self.args.time_step_max
|
||||
)
|
||||
dt = mx.maximum(dt, self.args.time_step_floor)
|
||||
|
||||
# Convolution step
|
||||
xBC = self.conv1d(xBC, cache=cache)
|
||||
|
||||
# Handle convolution caching and padding
|
||||
conv_state = cache[0]
|
||||
if conv_state is not None:
|
||||
xBC = mx.concatenate([conv_state, xBC], axis=1)
|
||||
|
||||
# Prepare input for conv1d: [B, C, L]
|
||||
xBC = mx.transpose(xBC, [0, 2, 1])
|
||||
|
||||
# Apply convolution
|
||||
xBC = self.conv1d(xBC)
|
||||
|
||||
# Update cache state
|
||||
cache[0] = mx.transpose(xBC, [0, 2, 1])[:, -self.args.conv_kernel+1:, :]
|
||||
|
||||
# Return to [B, L, C] format
|
||||
xBC = mx.transpose(xBC, [0, 2, 1])
|
||||
xBC = silu(xBC)
|
||||
|
||||
|
||||
# Split conv output
|
||||
x = xBC[:, :, :self.args.intermediate_size]
|
||||
B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size]
|
||||
C = xBC[:, :, -self.args.state_size:]
|
||||
|
||||
|
||||
# Reshape for SSM
|
||||
x = mx.reshape(x, (batch_size, 1, self.args.num_heads, self.args.head_dim))
|
||||
x = mx.squeeze(x, axis=1)
|
||||
|
||||
B = mx.reshape(B, (batch_size, 1, self.args.state_size))
|
||||
x = mx.reshape(x, (batch_size, seq_len, self.args.num_heads, self.args.head_dim))
|
||||
|
||||
B = mx.reshape(B, (batch_size, seq_len, self.args.state_size))
|
||||
B = mx.broadcast_to(B, (batch_size, self.args.num_heads, self.args.state_size))
|
||||
B = mx.expand_dims(B, axis=2)
|
||||
|
||||
C = mx.reshape(C, (batch_size, 1, self.args.state_size))
|
||||
|
||||
C = mx.reshape(C, (batch_size, seq_len, self.args.state_size))
|
||||
C = mx.broadcast_to(C, (batch_size, self.args.num_heads, self.args.state_size))
|
||||
C = mx.expand_dims(C, axis=3)
|
||||
|
||||
|
||||
# SSM state update
|
||||
ssm_state = cache[1]
|
||||
A = -mx.exp(self.A_log)
|
||||
dA = mx.exp(dt * mx.expand_dims(A, 0))
|
||||
dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
|
||||
|
||||
x = mx.expand_dims(x, axis=3)
|
||||
dBx = mx.matmul(x, B)
|
||||
|
||||
cache.ssm_states[0] = cache.ssm_states[0] * dA + dBx
|
||||
|
||||
|
||||
x = mx.expand_dims(x, axis=-1)
|
||||
dBx = mx.matmul(x, mx.expand_dims(B, axis=-2))
|
||||
|
||||
new_ssm_state = ssm_state * mx.expand_dims(dA, -1) + dBx
|
||||
cache[1] = new_ssm_state
|
||||
|
||||
# Output computation
|
||||
y = mx.matmul(cache.ssm_states[0], C)
|
||||
y = mx.matmul(new_ssm_state, mx.expand_dims(C, axis=-1))
|
||||
y = mx.squeeze(y, axis=-1)
|
||||
|
||||
# y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
|
||||
|
||||
if pad_size > 0:
|
||||
y = y[:, :seq_len, :, :]
|
||||
|
||||
|
||||
# Final reshape and projections
|
||||
y = mx.reshape(y, (batch_size, 1, self.args.num_heads * self.args.head_dim))
|
||||
y = mx.reshape(y, (batch_size, seq_len, -1))
|
||||
y = self.norm(y + z)
|
||||
|
||||
|
||||
return self.out_proj(y)
|
||||
|
||||
|
||||
@ -322,21 +278,13 @@ class Model(nn.Module):
|
||||
return logits
|
||||
|
||||
def make_cache(self, batch_size=1):
|
||||
return [Mamba2Cache(batch_size, self.args.conv_kernel) for _ in range(len(self.layers))]
|
||||
return [MambaCache() for _ in range(len(self.backbone.layers))]
|
||||
|
||||
def sanitize(self, weights):
|
||||
sanitized = {}
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k:
|
||||
# Ensure weights are in correct shape (channels, 1, kernel_size)
|
||||
if v.ndim == 2:
|
||||
v = mx.expand_dims(v, axis=1)
|
||||
elif v.ndim == 1:
|
||||
v = mx.expand_dims(mx.expand_dims(v, axis=0), axis=0)
|
||||
sanitized[k] = v
|
||||
else:
|
||||
sanitized[k] = v
|
||||
return sanitized
|
||||
if "conv1d.weight" in k and v.shape[-1] != 1:
|
||||
weights[k] = v.moveaxis(2, 1)
|
||||
return weights
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
|
343
llms/mlx_lm/models/s.py
Normal file
343
llms/mlx_lm/models/s.py
Normal file
@ -0,0 +1,343 @@
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .cache import Mamba2Cache
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
num_heads: int
|
||||
head_dim: int
|
||||
vocab_size: int
|
||||
hidden_size: int
|
||||
state_size: int
|
||||
num_hidden_layers: int
|
||||
layer_norm_epsilon: float
|
||||
expand: int
|
||||
conv_kernel: int
|
||||
n_groups: int
|
||||
use_bias: bool
|
||||
use_conv_bias: bool
|
||||
initializer_range: float
|
||||
residual_in_fp32: bool
|
||||
time_step_min: float
|
||||
time_step_max: float
|
||||
time_step_floor: float
|
||||
rescale_prenorm_residual: bool
|
||||
rms_norm: bool
|
||||
chunk_size: int
|
||||
tie_word_embeddings: bool
|
||||
use_cache: bool = True
|
||||
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
||||
time_step_rank: Union[int, str] = "auto"
|
||||
model_type: str = "mamba2"
|
||||
|
||||
def __post_init__(self):
|
||||
if not hasattr(self, "intermediate_size"):
|
||||
self.intermediate_size = int(self.expand * self.hidden_size)
|
||||
if not hasattr(self, "head_dim"):
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
if self.time_step_rank == "auto":
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||
|
||||
|
||||
class MambaRMSNormGated(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((hidden_size,))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def __call__(self, hidden_states, gate=None):
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.silu(gate)
|
||||
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
||||
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states
|
||||
|
||||
|
||||
def silu(x):
|
||||
return x * mx.sigmoid(x)
|
||||
|
||||
def ssd(x, A, B, C, chunk_size):
|
||||
# Replace einsum operations with explicit reshape and matrix multiply
|
||||
batch, seqlen, nheads, dim = x.shape
|
||||
B = mx.expand_dims(B, axis=2)
|
||||
C = mx.expand_dims(C, axis=2)
|
||||
|
||||
state = mx.zeros((batch, nheads, dim, B.shape[-1]))
|
||||
outputs = []
|
||||
|
||||
for i in range(0, seqlen, chunk_size):
|
||||
chunk = slice(i, min(i + chunk_size, seqlen))
|
||||
dA = mx.exp(mx.expand_dims(A[chunk], axis=0))
|
||||
|
||||
# Replace einsum with explicit operations
|
||||
x_chunk = x[:, chunk] # [batch, chunk_size, nheads, dim]
|
||||
x_chunk = mx.transpose(x_chunk, [0, 2, 3, 1]) # [batch, nheads, dim, chunk_size]
|
||||
B_chunk = B[:, chunk] # [batch, chunk_size, state_size]
|
||||
dBx = mx.matmul(x_chunk, B_chunk) # [batch, nheads, dim, state_size]
|
||||
|
||||
state = state * mx.expand_dims(dA, axis=-1) + dBx
|
||||
|
||||
# Replace einsum with explicit operations
|
||||
C_chunk = C[:, chunk] # [batch, chunk_size, state_size]
|
||||
y = mx.matmul(state, mx.transpose(C_chunk, [0, 2, 1])) # [batch, nheads, dim, chunk_size]
|
||||
y = mx.transpose(y, [0, 3, 1, 2]) # [batch, chunk_size, nheads, dim]
|
||||
outputs.append(y)
|
||||
|
||||
return mx.concatenate(outputs, axis=1), state
|
||||
|
||||
|
||||
class DepthWiseConv1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.padding = padding
|
||||
self.groups = groups if groups is not None else in_channels
|
||||
|
||||
assert in_channels == out_channels, "In and out channels must be same for depthwise convolution"
|
||||
assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
|
||||
|
||||
# Initialize weight with correct shape [C_out, 1, kernel_size]
|
||||
self.weight = mx.random.normal((out_channels, 1, kernel_size))
|
||||
self.bias = mx.zeros((out_channels,)) if bias else None
|
||||
|
||||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||
B, L, C = x.shape
|
||||
K = self.kernel_size
|
||||
|
||||
assert C == self.in_channels, f"Input channels {C} doesn't match expected {self.in_channels}"
|
||||
|
||||
# Handle caching for sequential processing
|
||||
if cache is not None and cache.conv_states[0] is not None:
|
||||
if isinstance(cache.conv_states[0], type(None)):
|
||||
cache.conv_states[0] = mx.zeros((B, K-1, C))
|
||||
x = mx.concatenate([cache.conv_states[0], x], axis=1)
|
||||
|
||||
# Process each channel independently
|
||||
outputs = []
|
||||
for c in range(C):
|
||||
# Extract and reshape the channel
|
||||
x_c = x[:, :, c] # [B, L]
|
||||
x_c = mx.expand_dims(x_c, axis=1) # [B, 1, L]
|
||||
|
||||
# Get weight for this channel - already in correct shape [1, 1, K]
|
||||
w_c = mx.expand_dims(self.weight[c], axis=0) # Ensure [1, 1, K]
|
||||
|
||||
# Apply convolution
|
||||
y_c = mx.conv_general(
|
||||
x_c,
|
||||
w_c,
|
||||
stride=1,
|
||||
padding=self.padding
|
||||
)
|
||||
|
||||
if self.bias is not None:
|
||||
y_c = y_c + self.bias[c]
|
||||
|
||||
outputs.append(mx.squeeze(y_c, axis=1))
|
||||
|
||||
y = mx.stack(outputs, axis=-1)
|
||||
|
||||
# Update cache
|
||||
if cache is not None:
|
||||
cache.conv_states[0] = x[:, -K+1:, :] if x.shape[1] >= K else x
|
||||
|
||||
return y
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
self.chunk_size = args.chunk_size
|
||||
|
||||
d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
|
||||
self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias)
|
||||
|
||||
self.conv_dim = args.intermediate_size + 2 * args.state_size
|
||||
self.conv1d = DepthWiseConv1d(
|
||||
in_channels=self.conv_dim,
|
||||
out_channels=self.conv_dim,
|
||||
kernel_size=args.conv_kernel,
|
||||
groups=self.conv_dim,
|
||||
bias=args.use_conv_bias,
|
||||
padding=args.conv_kernel - 1
|
||||
)
|
||||
|
||||
self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
self.D = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
|
||||
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||||
|
||||
if args.rescale_prenorm_residual:
|
||||
layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
|
||||
self.out_proj.weight = self.out_proj.weight * layer_scale
|
||||
|
||||
def __call__(self, u: mx.array, cache=None):
|
||||
# Expect input shape: [batch_size, 1, hidden_size]
|
||||
batch_size, seq_len, _ = u.shape
|
||||
pad_size = self.chunk_size - (seq_len % self.chunk_size)
|
||||
|
||||
# Initialize states if needed
|
||||
if cache.conv_states[0] is None:
|
||||
cache.conv_states[0] = mx.zeros((
|
||||
batch_size,
|
||||
self.args.conv_kernel - 1,
|
||||
self.conv_dim
|
||||
))
|
||||
|
||||
if cache.ssm_states[0] is None:
|
||||
cache.ssm_states[0] = mx.zeros((
|
||||
batch_size,
|
||||
self.args.num_heads,
|
||||
self.args.head_dim,
|
||||
self.args.state_size
|
||||
))
|
||||
|
||||
# Project input
|
||||
zxbcdt = self.in_proj(u)
|
||||
|
||||
# Split projections
|
||||
z = zxbcdt[:, :, :self.args.intermediate_size]
|
||||
xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size]
|
||||
dt = zxbcdt[:, :, -(self.args.num_heads):]
|
||||
|
||||
# Process delta time
|
||||
dt = mx.reshape(dt, (batch_size, seq_len, self.args.num_heads))
|
||||
dt = mx.squeeze(dt, axis=0) # Remove sequence dimension for single token
|
||||
dt = mx.clip(
|
||||
nn.softplus(dt + self.dt_bias),
|
||||
self.args.time_step_min,
|
||||
self.args.time_step_max
|
||||
)
|
||||
dt = mx.maximum(dt, self.args.time_step_floor)
|
||||
|
||||
# Convolution step
|
||||
xBC = self.conv1d(xBC, cache=cache)
|
||||
xBC = silu(xBC)
|
||||
|
||||
# Split conv output
|
||||
x = xBC[:, :, :self.args.intermediate_size]
|
||||
B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size]
|
||||
C = xBC[:, :, -self.args.state_size:]
|
||||
|
||||
# Reshape for SSM
|
||||
x = mx.reshape(x, (batch_size, 1, self.args.num_heads, self.args.head_dim))
|
||||
x = mx.squeeze(x, axis=1)
|
||||
|
||||
B = mx.reshape(B, (batch_size, 1, self.args.state_size))
|
||||
B = mx.broadcast_to(B, (batch_size, self.args.num_heads, self.args.state_size))
|
||||
B = mx.expand_dims(B, axis=2)
|
||||
|
||||
C = mx.reshape(C, (batch_size, 1, self.args.state_size))
|
||||
C = mx.broadcast_to(C, (batch_size, self.args.num_heads, self.args.state_size))
|
||||
C = mx.expand_dims(C, axis=3)
|
||||
|
||||
# SSM state update
|
||||
A = -mx.exp(self.A_log)
|
||||
dA = mx.exp(dt * mx.expand_dims(A, 0))
|
||||
dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
|
||||
|
||||
x = mx.expand_dims(x, axis=3)
|
||||
dBx = mx.matmul(x, B)
|
||||
|
||||
cache.ssm_states[0] = cache.ssm_states[0] * dA + dBx
|
||||
|
||||
# Output computation
|
||||
y = mx.matmul(cache.ssm_states[0], C)
|
||||
y = mx.squeeze(y, axis=-1)
|
||||
|
||||
# y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
|
||||
if pad_size > 0:
|
||||
y = y[:, :seq_len, :, :]
|
||||
|
||||
# Final reshape and projections
|
||||
y = mx.reshape(y, (batch_size, 1, self.args.num_heads * self.args.head_dim))
|
||||
y = self.norm(y + z)
|
||||
|
||||
return self.out_proj(y)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.residual_in_fp32 = args.residual_in_fp32
|
||||
|
||||
self.mixer = Mamba2Block(args)
|
||||
self.norm = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
if self.residual_in_fp32:
|
||||
x = x.astype(mx.float32)
|
||||
return self.mixer(self.norm(x), cache) + x
|
||||
|
||||
|
||||
class Mamba2(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
||||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
x = self.embeddings(x)
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
for layer, c in zip(self.layers, cache):
|
||||
x = layer(x, c)
|
||||
return self.norm_f(x)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
|
||||
self.backbone = Mamba2(args)
|
||||
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, inputs: mx.array, cache=None):
|
||||
B, T = inputs.shape
|
||||
|
||||
x = self.backbone(inputs, cache)
|
||||
|
||||
if self.args.tie_word_embeddings:
|
||||
logits = self.backbone.embeddings.as_linear(x)
|
||||
else:
|
||||
logits = self.lm_head(x)
|
||||
|
||||
return logits
|
||||
|
||||
def make_cache(self, batch_size=1):
|
||||
return [Mamba2Cache(batch_size, self.args.conv_kernel) for _ in range(len(self.layers))]
|
||||
|
||||
def sanitize(self, weights):
|
||||
sanitized = {}
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k:
|
||||
# Ensure weights are in correct shape (channels, 1, kernel_size)
|
||||
if v.ndim == 2:
|
||||
v = mx.expand_dims(v, axis=1)
|
||||
elif v.ndim == 1:
|
||||
v = mx.expand_dims(mx.expand_dims(v, axis=0), axis=0)
|
||||
sanitized[k] = v
|
||||
else:
|
||||
sanitized[k] = v
|
||||
return sanitized
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.backbone.layers
|
Loading…
Reference in New Issue
Block a user