feat(lora): add de-quantized support for fuse.py (#351)

* feat(lora): add de-quantized support for fuse.py

* address comments
This commit is contained in:
Anchen
2024-01-22 17:32:24 -08:00
committed by GitHub
parent 30be4c4734
commit 8022083979
3 changed files with 48 additions and 6 deletions

View File

@@ -4,6 +4,7 @@ import argparse
from pathlib import Path
import mlx.core as mx
import mlx.nn as nn
import utils
from mlx.utils import tree_flatten, tree_unflatten
from models.lora import LoRALinear
@@ -41,6 +42,12 @@ if __name__ == "__main__":
type=str,
default=None,
)
parser.add_argument(
"-d",
"--de-quantize",
help="Generate a de-quantized model.",
action="store_true",
)
print("Loading pretrained model")
args = parser.parse_args()
@@ -53,7 +60,7 @@ if __name__ == "__main__":
# Freeze all layers other than LORA linears
model.freeze()
for l in model.model.layers[-lora_layers:]:
for l in model.model.layers[len(model.model.layers) - lora_layers :]:
l.self_attn.q_proj = LoRALinear.from_linear(l.self_attn.q_proj)
l.self_attn.v_proj = LoRALinear.from_linear(l.self_attn.v_proj)
if hasattr(l, "block_sparse_moe"):
@@ -67,7 +74,32 @@ if __name__ == "__main__":
]
model.update_modules(tree_unflatten(fused_linears))
if args.de_quantize:
de_quantize_layers = []
for n, m in model.named_modules():
if isinstance(m, nn.QuantizedLinear):
bias = "bias" in m
weight = m.weight
weight = mx.dequantize(
weight,
m.scales,
m.biases,
m.group_size,
m.bits,
).astype(mx.float16)
output_dims, input_dims = weight.shape
linear = nn.Linear(input_dims, output_dims, bias=bias)
linear.weight = weight
if bias:
linear.bias = m.bias
de_quantize_layers.append((n, linear))
model.update_modules(tree_unflatten(de_quantize_layers))
weights = dict(tree_flatten(model.parameters()))
if args.de_quantize:
config.pop("quantization", None)
utils.save_model(args.save_path, weights, tokenizer, config)
if args.upload_name is not None: