adding debug statements (somehiw generating only goes through the fist MambaMixer block pass)

This commit is contained in:
Goekdeniz-Guelmez
2024-10-16 21:09:30 +02:00
parent 00ba27fe6c
commit 8073cb486c
2 changed files with 163 additions and 151 deletions

View File

@@ -6,37 +6,37 @@ from typing import Tuple, Union
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs
# python -m mlx_lm.generate --model rokyang/mamba2-130m-hf --prompt "hello how are you."
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str = "mamba2"
num_heads: int = 128
head_dim: int = 64
vocab_size: int = 32768
hidden_size: int = 4096
state_size: int = 128
num_hidden_layers: int = 64
layer_norm_epsilon: float = 1e-5
expand: int = 2
conv_kernel: int = 4
n_groups: int = 8
use_bias: bool = False
use_conv_bias: bool = True
initializer_range: float = 0.1
residual_in_fp32: bool = True
time_step_rank: Union[int, str] = "auto"
time_step_min: float = 0.001
time_step_max: float = 0.1
time_step_floor: float = 1e-4
num_heads: int
head_dim: int
vocab_size: int
hidden_size: int
state_size: int
num_hidden_layers: int
layer_norm_epsilon: float
expand: int
conv_kernel: int
n_groups: int
use_bias: bool
use_conv_bias: bool
initializer_range: float
residual_in_fp32: bool
time_step_min: float
time_step_max: float
time_step_floor: float
rescale_prenorm_residual: bool
use_cache: bool
rms_norm: bool
chunk_size: int
tie_word_embeddings: bool
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
rescale_prenorm_residual: bool = False
use_cache: bool = True
rms_norm: bool = True
chunk_size: int = 256
tie_word_embeddings: bool = False
time_step_rank: Union[int, str] = "auto"
model_type: str = "mamba2"
def __post_init__(self):
if not hasattr(self, "intermediate_size"):
@@ -149,26 +149,35 @@ class Mamba2Mixer(nn.Module):
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=args.use_bias)
def ssm_step(self, x, state, dt_proj):
print(f"ssm_step input shapes - x: {x.shape}, dt_proj: {dt_proj.shape}")
A = -mx.exp(self.A_log)
D = self.D
delta = nn.softplus(dt_proj + self.dt_bias)
B, C = mx.split(x, indices_or_sections=[self.state_size * self.n_groups], axis=-1)
print(f"ssm_step split shapes - B: {B.shape}, C: {C.shape}")
B = B.reshape(-1, self.n_groups, self.state_size)
C = C.reshape(-1, self.n_groups, self.state_size)
print(f"After reshape - B: {B.shape}, C: {C.shape}")
delta = delta.reshape(-1, self.num_heads, 1)
A = A.reshape(1, self.num_heads, 1)
if state is None:
new_state = mx.expand_dims(delta, -1) * B
new_state = delta * B
else:
new_state = mx.expand_dims(delta, -1) * (B + state * mx.exp(mx.expand_dims(delta, -1) * A))
new_state = delta * (B + state * mx.exp(delta * A))
print(f"Before final computation - new_state: {new_state.shape}, C: {C.shape}")
y = mx.sum(new_state * C, axis=-1)
y = y + D * x[:, :self.num_heads]
print(f"ssm_step output shape - y: {y.shape}")
return y, new_state
def __call__(self, x, cache):
B, T, D = x.shape
print(f"__call__ input shape - x: {x.shape}")
if cache is None:
cache = [None, None]
@@ -176,47 +185,37 @@ class Mamba2Mixer(nn.Module):
for t in range(T):
xt = x[:, t, :]
xz = self.in_proj(xt)
print(f"After in_proj shape - xz: {xz.shape}")
x_t, z_t, dt_proj = mx.split(
xz,
indices_or_sections=[self.conv_dim, self.conv_dim + self.intermediate_size],
axis=-1
)
print(f"After split shapes - x_t: {x_t.shape}, z_t: {z_t.shape}, dt_proj: {dt_proj.shape}")
conv_out, cache[0] = self.conv1d(mx.expand_dims(x_t, 1), cache[0])
x_t = conv_out.squeeze(1)
x_t = nn.silu(x_t)
print(f"Before ssm_step shape - x_t: {x_t.shape}")
y_t, cache[1] = self.ssm_step(x_t, cache[1], dt_proj)
z_t = nn.silu(z_t)
print(f"After ssm_step shapes - y_t: {y_t.shape}, z_t: {z_t.shape}")
# Print shapes for debugging
print(f"y_t shape: {y_t.shape}")
print(f"z_t shape: {z_t.shape}")
print(f"self.num_heads: {self.num_heads}")
print(f"self.intermediate_size: {self.intermediate_size}")
print(f"self.head_dim: {self.head_dim}")
# Flexible reshaping
y_t_reshaped = y_t.reshape(B, -1, 1)
z_t_reshaped = z_t.reshape(B, y_t_reshaped.shape[1], -1)
# Print reshaped shapes
print(f"y_t_reshaped shape: {y_t_reshaped.shape}")
print(f"z_t_reshaped shape: {z_t_reshaped.shape}")
# Element-wise multiplication
output_t = y_t_reshaped * z_t_reshaped
output_t = y_t[:, :, None] * z_t[:, None, :]
print(f"After multiplication shape - output_t: {output_t.shape}")
# Reshape to match the expected input of out_proj
output_t = output_t.reshape(B, self.intermediate_size)
print(f"output_t shape before out_proj: {output_t.shape}")
print(f"out_proj weight shape: {self.out_proj.weight.shape}")
# Sum across the second dimension to match the intermediate_size
output_t = output_t.sum(axis=1)
print(f"After sum shape - output_t: {output_t.shape}")
output_t = self.out_proj(output_t)
print(f"After out_proj shape - output_t: {output_t.shape}")
outputs.append(output_t)
output = mx.stack(outputs, axis=1)
print(f"Final output shape: {output.shape}")
return output