grpo_trainer shoudl be done

This commit is contained in:
Goekdeniz-Guelmez 2025-01-31 16:54:18 +01:00
parent 6c58aa995c
commit 80bcf68956

View File

@ -229,47 +229,6 @@ def iterate_batches(dataset, tokenizer, batch_size, max_seq_length, train=False)
break
def evaluate_grpo(
model,
ref_model,
dataset,
tokenizer,
batch_size,
num_batches,
beta: float,
epslion: float,
group_size: int,
max_seq_length,
loss: callable = grpo_loss,
iterate_batches: callable = iterate_batches
):
all_losses = 0
ntokens = 0
index_iterator = iter(range(num_batches)) if num_batches != -1 else iter(int, 1)
for _, batch in zip(
index_iterator,
iterate_batches(
dataset=dataset,
tokenizer=tokenizer,
batch_size=batch_size,
max_seq_length=max_seq_length,
),
):
losses, toks = loss(
model,
*batch
)
all_losses += losses * toks
ntokens += toks
mx.eval(all_losses, ntokens)
all_losses = mx.distributed.all_sum(all_losses, stream=mx.cpu)
ntokens = mx.distributed.all_sum(ntokens, stream=mx.cpu)
return (all_losses / ntokens).item()
def evaluate_grpo(
model,
ref_model,
@ -299,10 +258,7 @@ def evaluate_grpo(
max_seq_length=max_seq_length,
),
):
# Extract prompts from the batch (assuming the batch contains 'prompts')
prompts = batch.get("prompts", None)
# Call the loss function with the correct arguments
prompts = batch
losses, toks, metrics = loss(
model=model,
tokenizer=tokenizer,
@ -313,15 +269,25 @@ def evaluate_grpo(
epslion=epslion,
ref_model=ref_model
)
all_losses += losses * toks
ntokens += toks
if all_metrics is None:
all_metrics = {k: v * toks for k, v in metrics.items()}
else:
for k, v in metrics.items():
all_metrics[k] += v * toks
mx.eval(all_losses, ntokens)
all_losses = mx.distributed.all_sum(all_losses, stream=mx.cpu)
ntokens = mx.distributed.all_sum(ntokens, stream=mx.cpu)
all_metrics = {k: mx.distributed.all_sum(v) for k, v in all_metrics.items()}
return (all_losses / ntokens).item()
avg_metrics = {k: (v / ntokens).item() for k, v in all_metrics.items()}
avg_loss = (all_losses / ntokens).item()
return avg_loss, ntokens, avg_metrics
def train(
@ -335,7 +301,7 @@ def train(
iterate_batches: callable = iterate_batches,
training_callback: TrainingCallback = None,
):
print(f"Starting training..., iters: {args.iters}")
print(f"Starting GRPO training..., iters: {args.iters}")
world = mx.distributed.init()
world_size = world.size()
rank = world.rank()
@ -349,7 +315,7 @@ def train(
def step(batch):
# Forward and backward pass
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
(loss, toks, metrics), grad = loss_value_and_grad(model, *batch)
# All reduce the gradients if running in distributed mode
grad = average_gradients(grad)
@ -357,18 +323,22 @@ def train(
# Model update
optimizer.update(model, grad)
return lvalue, toks
return loss, toks, metrics
loss_value_and_grad = nn.value_and_grad(model, loss)
# Save initial model weights as reference
ref_weights = {k: v.copy() for k, v in model.parameters().items()}
losses = 0
n_tokens = 0
steps = 0
trained_tokens = 0
# Main training loop
accumulated_metrics = {
'rewards': 0,
'rewards_std': 0,
'grouped_rewards': 0,
'grouped_rewards_std': 0,
'kl': 0
}
start = time.perf_counter()
for it, batch in zip(
range(1, args.iters + 1),
@ -384,7 +354,7 @@ def train(
# is always measured before any training.
if it == 1 or it % args.steps_per_eval == 0 or it == args.iters:
stop = time.perf_counter()
val_loss = evaluate(
val_loss, val_ntokens, val_metrics = evaluate(
model=model,
dataset=val_dataset,
loss=loss,
@ -398,61 +368,74 @@ def train(
if rank == 0:
print(
f"Iter {it}: "
f"Val loss {val_loss:.3f}, "
f"Val loss {val_loss:.8f}, "
f"Val rewards {val_metrics['rewards']:.3f}, "
f"Val rewards_std {val_metrics['rewards_std']:.3f}, "
f"Val grouped_rewards {val_metrics['grouped_rewards']:.3f}, "
f"Val grouped_rewards_std {val_metrics['grouped_rewards_std']:.3f}, "
f"Val kl {val_metrics['kl']:.3f}, "
f"Val took {val_time:.3f}s",
flush=True,
)
if training_callback is not None:
val_info = {
training_callback.on_val_loss_report({
"iteration": it,
"val_loss": val_loss,
**{f"val_{k}": v for k, v in val_metrics.items()},
"val_time": val_time,
}
training_callback.on_val_loss_report(val_info)
})
start = time.perf_counter()
lvalue, toks = step(batch)
losses += lvalue
loss, toks, metrics = step(batch)
losses += loss
n_tokens += toks
steps += 1
for k, v in metrics.items():
accumulated_metrics[k] += v
mx.eval(state, losses, n_tokens)
# Report training loss if needed
if it % args.steps_per_report == 0 or it == args.iters:
stop = time.perf_counter()
train_loss = mx.distributed.all_sum(losses, stream=mx.cpu).item()
train_loss /= steps * mx.distributed.init().size()
avg_metrics = {k: v / (steps * world_size) for k, v in accumulated_metrics.items()}
n_tokens = mx.distributed.all_sum(n_tokens, stream=mx.cpu).item()
learning_rate = optimizer.learning_rate.item()
it_sec = args.steps_per_report / (stop - start)
tokens_sec = float(n_tokens) / (stop - start)
trained_tokens += n_tokens
peak_mem = mx.metal.get_peak_memory() / 1e9
if rank == 0:
print(
f"Iter {it}: Train loss {train_loss:.3f}, "
f"Iter {it}: Train loss {train_loss:.8f}, "
f"Rewards {avg_metrics['rewards']:.3f}, "
f"Rewards_std {avg_metrics['rewards_std']:.3f}, "
f"Grouped Rewards {avg_metrics['grouped_rewards']:.3f}, "
f"Grouped Rewards {avg_metrics['grouped_rewards']:.3f}, "
f"Grouped Rewards_std {val_metrics['grouped_rewards_std']:.3f}, "
f"KL {val_metrics['kl']:.3f}, "
f"Learning Rate {learning_rate:.3e}, "
f"It/sec {it_sec:.3f}, "
f"Tokens/sec {tokens_sec:.3f}, "
f"Trained Tokens {trained_tokens}, "
f"Peak mem {peak_mem:.3f} GB",
flush=True,
)
if training_callback is not None:
train_info = {
training_callback.on_train_loss_report({
"iteration": it,
"train_loss": train_loss,
**{f"train_{k}": v for k, v in avg_metrics.items()},
"learning_rate": learning_rate,
"iterations_per_second": it_sec,
"tokens_per_second": tokens_sec,
"trained_tokens": trained_tokens,
"peak_memory": peak_mem,
}
training_callback.on_train_loss_report(train_info)
})
losses = 0
n_tokens = 0