From 81318ad4a8b2ca5fd1431a42db2b0244d16be851 Mon Sep 17 00:00:00 2001 From: Awni Hannun Date: Fri, 31 May 2024 12:54:14 -0700 Subject: [PATCH] Port of phi3small (#794) * start port of phi3small * fix phi3 * use block sparsity * compile activation * nits in readme / mlx lm version --- README.md | 8 +- llms/mlx_lm/LORA.md | 4 +- llms/mlx_lm/models/phi3small.py | 318 ++++++++++++++++++++++++++++++++ llms/mlx_lm/requirements.txt | 2 +- llms/mlx_lm/version.py | 2 +- 5 files changed, 326 insertions(+), 8 deletions(-) create mode 100644 llms/mlx_lm/models/phi3small.py diff --git a/README.md b/README.md index b3404038..2ca11d4b 100644 --- a/README.md +++ b/README.md @@ -9,10 +9,10 @@ Some more useful examples are listed below. ### Text Models +- [MLX LM](llms/README.md) a package for LLM text generation, fine-tuning, and more. - [Transformer language model](transformer_lm) training. -- Large scale text generation with [LLaMA](llms/llama), - [Mistral](llms/mistral), [Phi-2](llms/phi2), and more in the [LLMs](llms) - directory. +- Minimal examples of large scale text generation with [LLaMA](llms/llama), + [Mistral](llms/mistral), and more in the [LLMs](llms) directory. - A mixture-of-experts (MoE) language model with [Mixtral 8x7B](llms/mixtral). - Parameter efficient fine-tuning with [LoRA or QLoRA](lora). - Text-to-text multi-task Transformers with [T5](t5). @@ -21,7 +21,7 @@ Some more useful examples are listed below. ### Image Models - Image classification using [ResNets on CIFAR-10](cifar). -- Generating images with [Stable Diffusion](stable_diffusion). +- Generating images with [Stable Diffusion or SDXL](stable_diffusion). - Convolutional variational autoencoder [(CVAE) on MNIST](cvae). ### Audio Models diff --git a/llms/mlx_lm/LORA.md b/llms/mlx_lm/LORA.md index 67d05778..3d65f213 100644 --- a/llms/mlx_lm/LORA.md +++ b/llms/mlx_lm/LORA.md @@ -129,7 +129,7 @@ For example, to fuse and upload a model derived from Mistral-7B-v0.1, run: ```shell mlx_lm.fuse \ --model mistralai/Mistral-7B-v0.1 \ - --upload-repo mlx-community/my-4bit-lora-mistral \ + --upload-repo mlx-community/my-lora-mistral-7b \ --hf-path mistralai/Mistral-7B-v0.1 ``` @@ -249,7 +249,7 @@ of memory. Here are some tips to reduce memory use should you need to do so: For example, for a machine with 32 GB the following should run reasonably fast: ``` -python lora.py \ +mlx_lm.lora \ --model mistralai/Mistral-7B-v0.1 \ --train \ --batch-size 1 \ diff --git a/llms/mlx_lm/models/phi3small.py b/llms/mlx_lm/models/phi3small.py new file mode 100644 index 00000000..f3644a56 --- /dev/null +++ b/llms/mlx_lm/models/phi3small.py @@ -0,0 +1,318 @@ +from dataclasses import dataclass +from functools import partial +from typing import Dict, Optional, Tuple, Union + +import mlx.core as mx +import mlx.nn as nn + +from .base import BaseModelArgs + + +@dataclass +class ModelArgs(BaseModelArgs): + model_type: str + hidden_size: int + dense_attention_every_n_layers: int + ff_intermediate_size: int + gegelu_limit: float + num_hidden_layers: int + num_attention_heads: int + layer_norm_epsilon: float + vocab_size: int + num_key_value_heads: int = None + mup_attn_multiplier: float = 1.0 + mup_use_scaling: bool = True + mup_embedding_multiplier: float = 10.0 + mup_width_multiplier: float = 8.0 + rope_embedding_base: float = 1000000 + rope_position_scale: float = 1.0 + blocksparse_block_size: int = (64,) + blocksparse_num_local_blocks: int = 16 + blocksparse_vert_stride: int = 8 + + +@partial(mx.compile, shapeless=True) +def gegelu_impl(a_gelu, a_linear, limit): + a_gelu = mx.where( + mx.isinf(a_gelu), + a_gelu, + mx.clip(a_gelu, a_min=None, a_max=limit), + ) + a_linear = mx.where( + mx.isinf(a_linear), + a_linear, + mx.clip(a_linear, a_min=-limit, a_max=limit), + ) + out_gelu = a_gelu * mx.sigmoid(1.702 * a_gelu) + return out_gelu * (a_linear + 1.0) + + +def gegelu(x, limit): + a_gelu, a_linear = x[..., ::2], x[..., 1::2] + return gegelu_impl(a_gelu, a_linear, limit) + + +class Attention(nn.Module): + def __init__(self, args: ModelArgs, layer_idx): + super().__init__() + + dim = args.hidden_size + self.n_heads = n_heads = args.num_attention_heads + self.n_kv_heads = n_kv_heads = args.num_key_value_heads + self.n_q_per_kv = n_heads // n_kv_heads + + self.head_dim = head_dim = args.hidden_size // n_heads + + self.query_key_value = nn.Linear( + dim, (self.n_heads + 2 * self.n_kv_heads) * head_dim + ) + self.dense = nn.Linear(dim, dim) + + if args.mup_use_scaling: + norm_factor = head_dim / args.mup_attn_multiplier + else: + norm_factor = math.sqrt(head_dim) + self.scale = 1.0 / norm_factor + + self.rope = nn.RoPE( + head_dim, + traditional=False, + base=args.rope_embedding_base, + scale=args.rope_position_scale, + ) + + if layer_idx % args.dense_attention_every_n_layers == 0: + self.block_sparse = True + self.blocksparse_block_size = args.blocksparse_block_size + if self.blocksparse_block_size not in (32, 64): + raise ValueError( + f"Unsupported block size {self.blocksparse_block_size}" + ) + self.blocksparse_num_local_blocks = args.blocksparse_num_local_blocks + self.blocksparse_vert_stride = args.blocksparse_vert_stride + else: + self.block_sparse = False + + def _block_sparse_mask(self, q_len, kv_len): + vert_stride = self.blocksparse_vert_stride + local_blocks = self.blocksparse_num_local_blocks + block_size = self.blocksparse_block_size + n_heads = self.n_heads + + kv_blocks = (kv_len + block_size - 1) // block_size + q_blocks = (q_len + block_size - 1) // block_size + q_pos = mx.arange(kv_blocks - q_blocks, kv_blocks)[None, :, None] + k_pos = mx.arange(kv_blocks)[None, None] + + mask_vert_strided = ( + mx.arange(kv_blocks)[None, :] + mx.arange(1, n_heads + 1)[:, None] + ) % vert_stride + mask_vert_strided = (mask_vert_strided == 0)[:, None, :] + + block_mask = (q_pos >= k_pos) & ( + (q_pos - k_pos < local_blocks) | mask_vert_strided + ) + block_mask = block_mask.reshape( + self.n_kv_heads, self.n_q_per_kv, *block_mask.shape[-2:] + ) + dense_mask = mx.repeat( + mx.repeat(block_mask, block_size, axis=-1), block_size, axis=-2 + ) + return block_mask, dense_mask[..., -q_len:, :kv_len] + + def _block_sparse_attention(self, queries, keys, values, scale, mask): + queries = scale * queries + B = queries.shape[0] + L = queries.shape[2] + queries = mx.reshape(queries, (B, self.n_kv_heads, self.n_q_per_kv, L, -1)) + keys = mx.expand_dims(keys, 2) + values = mx.expand_dims(values, 2) + + # TODO get rid of dense mask if we have a fill value + block_mask, dense_mask = self._block_sparse_mask(L, keys.shape[-2]) + scores = queries @ mx.swapaxes(keys, -1, -2) + # TODO, uncomment when faster + # scores = mx.block_masked_mm( + # queries, + # mx.swapaxes(keys, -1, -2), + # mask_out=block_mask, + # block_size=self.blocksparse_block_size, + # ) + + if mask is not None: + scores = scores + mask + scores = scores + mx.where( + dense_mask, mx.array(0, scores.dtype), mx.array(-float("inf"), scores.dtype) + ) + scores = mx.softmax(scores, axis=-1, precise=True) + + output = scores @ values + # TODO, uncomment when faster + # output = mx.block_masked_mm( + # scores, values, mask_lhs=block_mask, block_size=self.blocksparse_block_size + # ) + return mx.reshape(output, (B, self.n_heads, L, -1)) + + def __call__( + self, + x: mx.array, + mask: Optional[mx.array] = None, + cache: Optional[Tuple[mx.array, mx.array]] = None, + ) -> mx.array: + B, L, D = x.shape + + qkv = self.query_key_value(x) + qkv = qkv.reshape(B, L, -1, self.n_q_per_kv + 2, self.head_dim) + queries = qkv[..., :-2, :].flatten(-3, -2) + keys = qkv[..., -2, :] + values = qkv[..., -1, :] + + # Prepare the queries, keys and values for the attention computation + queries = queries.transpose(0, 2, 1, 3) + keys = keys.transpose(0, 2, 1, 3) + values = values.transpose(0, 2, 1, 3) + + if cache is not None: + queries = self.rope(queries, offset=cache.offset) + keys = self.rope(keys, offset=cache.offset) + keys, values = cache.update_and_fetch(keys, values) + else: + queries = self.rope(queries) + keys = self.rope(keys) + + if self.block_sparse: + output = self._block_sparse_attention( + queries, keys, values, scale=self.scale, mask=mask + ) + else: + output = mx.fast.scaled_dot_product_attention( + queries, keys, values, scale=self.scale, mask=mask + ) + output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) + return self.dense(output) + + +class MLP(nn.Module): + def __init__(self, args): + super().__init__() + dim = args.hidden_size + hidden_dim = args.ff_intermediate_size + self.gegelu_limit = args.gegelu_limit + self.up_proj = nn.Linear(dim, 2 * hidden_dim) + self.down_proj = nn.Linear(hidden_dim, dim) + + def __call__(self, x) -> mx.array: + x = self.up_proj(x) + return self.down_proj(gegelu(x, self.gegelu_limit)) + + +class TransformerBlock(nn.Module): + def __init__(self, args: ModelArgs, layer_idx): + super().__init__() + self.num_attention_heads = args.num_attention_heads + self.hidden_size = args.hidden_size + self.self_attn = Attention(args, layer_idx) + self.mlp = MLP(args) + self.input_layernorm = nn.LayerNorm( + args.hidden_size, eps=args.layer_norm_epsilon + ) + self.post_attention_layernorm = nn.LayerNorm( + args.hidden_size, + eps=args.layer_norm_epsilon, + ) + self.args = args + + def __call__( + self, + x: mx.array, + mask: Optional[mx.array] = None, + cache: Optional[Tuple[mx.array, mx.array]] = None, + ) -> mx.array: + r = self.self_attn(self.input_layernorm(x), mask, cache) + h = x + r + r = self.mlp(self.post_attention_layernorm(h)) + out = h + r + return out + + +class Phi3Model(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.args = args + self.vocab_size = args.vocab_size + self.num_hidden_layers = args.num_hidden_layers + assert self.vocab_size > 0 + self.mup_embedding_multiplier = args.mup_embedding_multiplier + self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) + self.layers = [ + TransformerBlock(args=args, layer_idx=l) + for l in range(args.num_hidden_layers) + ] + self.final_layernorm = nn.LayerNorm( + args.hidden_size, eps=args.layer_norm_epsilon + ) + + def __call__( + self, + inputs: mx.array, + cache=None, + ): + h = self.embed_tokens(inputs) + if self.mup_embedding_multiplier: + h = self.mup_embedding_multiplier * h + + mask = None + if h.shape[1] > 1: + mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) + mask = mask.astype(h.dtype) + + if cache is None: + cache = [None] * len(self.layers) + + for layer, c in zip(self.layers, cache): + h = layer(h, mask, c) + + return self.final_layernorm(h) + + +class Model(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.model_type = args.model_type + self.model = Phi3Model(args) + self.args = args + self.mup_width_multiplier = args.mup_width_multiplier + self._dummy_tokenizer_ids = mx.array( + [100256, 100258, 100259, 100260, 100264, 100265] + + list(range(100267, 100352)) + ) + + def __call__( + self, + inputs: mx.array, + cache=None, + ): + out = self.model(inputs, cache) + out = self.model.embed_tokens.as_linear(out) + if self.mup_width_multiplier: + out = out / self.mup_width_multiplier + out[self._dummy_tokenizer_ids] = -float("inf") + return out + + @property + def layers(self): + return self.model.layers + + @property + def head_dim(self): + return self.args.hidden_size // self.args.num_attention_heads + + def sanitize(self, weights): + # Remove unused precomputed rotary freqs + return { + k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k + } + + @property + def n_kv_heads(self): + return self.args.num_key_value_heads diff --git a/llms/mlx_lm/requirements.txt b/llms/mlx_lm/requirements.txt index e6cb70de..32454335 100644 --- a/llms/mlx_lm/requirements.txt +++ b/llms/mlx_lm/requirements.txt @@ -1,4 +1,4 @@ -mlx>=0.14 +mlx>=0.14.1 numpy transformers>=4.39.3 protobuf diff --git a/llms/mlx_lm/version.py b/llms/mlx_lm/version.py index be00b8da..e97f7f0e 100644 --- a/llms/mlx_lm/version.py +++ b/llms/mlx_lm/version.py @@ -1,3 +1,3 @@ # Copyright © 2023-2024 Apple Inc. -__version__ = "0.14.0" +__version__ = "0.14.1"